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I. SUMMARY

A sufficient condition given for the asymptotic stability of
a continuous $ingle monotone nonlinearity system with slope confined

to (0, kz) having a transfer function G(jw) is
Re (1 + X(jw) + Y(ju) + o0jw) (G(Jw) + 1/k,) > 0

where a is a positive number, x(t) < 0 for t < 0 and zero for t > 0,
+oo
y(t) <0 for t > 0 and zero for t < 0 and f (

-00

x(t)] + |y(r) hdt < 1.
As is shown by examples the new criterion gives better results than
existing criteria. Also developed are improved stability criteria

for the case of the noﬁlinearity being an odd monotone function and for
a nonlinearity with a monotone bound having a certain degree of symmetry.

A number of theorems giving bounds on the response of the single
monotone nonlinearity system with initial condition and external excitation
are presented. Under certain circumstances these bounds, which are useful
¢n design, can also be employed to show Liapunov stability.

Improved time-frequency domain stability criteria are also developed
for systems with a single time varying nonlinearity, for smample data systems
with a single time invariant nonlinearity, amad for continuous nonlinear

systems having a number of nonlinearities.
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II. INTRODUCTION

This work 1s based upon the observation that if two functions
o(t) and ¢(t) satisfy oé¢(c) > 0 for o ¥ 0, and ¢(c) is a monotone
increasing function of o, a bound can be placed upon oIT[o(t) * A(t) 1o (t)dt
in terms of o[Tc(t) ¢(t)dt provided that A(t) satisfies certain con-
ditions. This relationship is used in Chapter I to give improved
conditions for the asymptotic stability of a continuous time invariant
system with a single monotone nonlinearity. A modification of this
proof results in two other theorems, one for the asymptotic stability
of a system with a single odd monotone nonlinearity and the other for
a system with a nonlinearity having a monotone bound. In Chapter II
bounds are obtained on the response of the continuous system whose
stability was discussed in Chapter I. In addition to giving bounds
on the response with an initial condition excitation, bounds are
also developed on the response for an external input that is Fourier
transformable in a finite time interval. If the input is itself
bounded, these theorems permit the showing of Liapunov stability.
Chapter III extends the results of Chapter I to systems having a single

time varying nonlinearity, sampled data systems with a single nonlinearity,

and continuous systems with a number of time invariant nonlinearities.




IIT CHAPTER 1. THE STABILITY OF SINGLE NONLINEARITY
CONTINUOUS SYSTEMS

A. Introduction

This chapter deals mainly with sufficient conditions for the
asymptotic stability in the large of the system shown in Figure 1 with
¢(0) a continuous monotone increasing nonlinearity. Several recent
works have considered this problem [1-4]. Reference [4] by one of the
authors concerns a part of the research presented in this report,
namely corollary 3 of theorem 1.1 and a simplified version of
theorem 1.2. Brockett and Willems [3] presented a sufficient
condition for the asymptotic stability of this system with the
nonlinearity being a continuous monotone function. With O g.d¢/do §_k2,

it was shown that
Re[z(Ju) (6(jw) + 1/k))] > 0

is a sufficient condition for asymptotic stability where Z 1is either a
physically realizable RL driving point impedance function or its recip-
rocal. Z allows the angle of 6(juw) + l/k2 to lie outside the t 90° band
in only one direction. In other words, the polar plot of G + l/k2 is
restricted to lie in three quadrants. The present work presents a
theorem for the monotone nonlinearity which permits a larger class

of Z multipliers to be used, thereby allowing G + 1/k2 to lie in four
quadrants. The same approach|is applied to give improved conditions

for the asymptotic stability of a system with a single odd monotone

nonlinearity and for a system with a nonlinearity having a monotone

bound.
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In using the following theorems, if the nonlinear characteristic

satisfies kllcl < |¢(o)|, the linear transformation ¢1(o) = ¢$(0) ~ k.o

1
giving Gl(s) = G(s)/(1 + k1G(s)) should first be carried out, provided
that in the case of theorem 1.1 ¢1(o) is a monotone increasing function.
The theorems are then applied to the transformed system with nonlinear
characteristic ¢l(o) and transfer function Gl(s).

In the following work the notation ¢(o) is used when the

properties of the nonlinearity are under consideration and ¢(t) is

used when the time varying variable ¢(o(t)) is being discussed.

B. A Theorem For Monotone Nonlinearities

Theorem 1.1

For the system shown in figure 1 let the following hold:

a. 0 < d¢(o)/do f_kz where k2 is a positive number, both ¢ (o)
ané g - ¢(0)/k2 = 0 only for 0 = $(0) = 0, and d¢(c)/do be
a continuous function of o.

b. G(s) = N(s)/D(s) with the degree of N(s) at least one less
than the degree of D(s) and with the zeros of D(s) in the left
half s plane. N(s) and D(s) are assumed to have no common

factors in the right half s plane or on the jw axis.

g
c. Lim f ¢(o)d0/|¢(o)|2 = © or
0 4

Icl <> ©
Lim |[¢(0)] = h|o| where h > 0.

o] =
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Then a sufficient condition for asymptotic stability in the large is
that

Re[Z(s)(G(s) + 1/k2)] >0 | (1.1)
for s = jw for all real w where
Z(s) = 1 + as + X(s) + Y(s). (1.2)

The time function x(t) = 0 for t > 0 and y(t) = 0 for t < 0. Both

of these functions are assumed to be the sum of a piecewise continuous
function which is Fourier transformable and shifted impulse functions
that satisfy

“+
[ (x| + |ye)]) de <1 (1.3)

with both x(t) and y(t) < 0. The magnitude of the piecewise continuous
component of x(t) is assumed to be less than & exp (ft) where 2 and f

are positive numbers. The contribution of the impulses to the integral
is to be taken as the strengths of the impulses. o is a positive number.
Corollary 1. In addition to the conditions of theorem 1.1, if ¢(o) is an
odd monotone nonlinearity that is, if ¢(o) =-¢(e0), the assertion of the

theorem holds with (I.3) becoming
oo

{  (x()] + |y(t)]) dt < 1 where x(t) and y(t) are

=00

permitted to take on positive as well as negative values.

Corollary 2. If G(s) has poles on the jw axis, G(s) is required to be

stable in the limit; that is, for an arbitrarily small pesitive number



€, the zeros of 1 + €G(s) must all be in the left half s plane. Also,

the slope condition becomes > § > 0 and (1.1) becomes > 62 > 0 where § and
62 are small positive numbers. The other conditions are unchanged.
Corollary 3. If c is not satisfied, the assertion of the theorem

holds with x(t) required to be identically zero.

Since the statement of the theorem is somewhat involved, a
discussion of its various conditions is in order. The slope bound
condition a includes a requirement that d¢(c)/do be a continuous
function of ¢ whose purpose is to insure the Fourier transformability
and piecewise continuity of o(t), a(t), and ¢(t); any other property
insuring this result would suffice. Condition b is used to guarantee
that if o(t) and ¢(t) are bounded for all t and approach zero as
t + «, the other state variables of the system have this same type
of behavior. In addition, having the degree condition holding allows
the as term to be used in the frequency domain criterion since it
insures the Fourier transformability of that component of do(t)/dt due
to -¢(t). The first part of condition c permits the nonlinear character-
istic to have a behavior which ranges from that of a saturation function
to a linear characteristic for large values of o, with the first men-
tioned function being allowed but not the second. The second part of

this condition permits a linear characteristic.

C. Application of the Theorem

In applying the theorem it is convenient to first draw the log
magnitude and phase plots of G(jw) + 1/k2. Since |G(jw)| approaches zero

for w sufficiently large, above a certain frequency, W, IG(jm)I < l/k2,




and hence the phase angle of G(jw) + l/k2 will be less than 90°. The
real part condition will be satisfied with Z(s) = 1 for w > w,e If it
is also satisfied for w < W.s asymptotic stability will be guaranteed.
If the real part condition is not satisfied for w < w,» a
frequency varying Z(jw) must be chosen in an attempt to show stability.
Since the real part condition is already satisfied for w >0 Z(jw)
should not disturb this property. The general philosophy to be followed
in searching for a suitable Z(juw) function is to observe the frequency
bands in which the angle of G(juw) + 1/k2 lies outside the T 90° band and
then to try to choose a Z(jw) function such that its phase angle when
added to that of G(jw) + l/k2 gives a resultant phase angle which lies

¥

within the T 90° band.

D. Two Z(s) Multipliers

n s + a m s - ¢
I e R e R
i=1 i §=1 3

0 < c1 < dl < c2 < d2 < .. cm < dm

The first product is an RL impedance function and the second is
transformed into an RL impedance function by replacing & with -s.
Therefore, the poles and zeros of the first product alternate along

the negative real axis while the critical points of the second product are




along the positive real axis of the s plane. Expressing this function

in a partial fraction expansion gives

=]
h
~—ig

wherefi and lj are positive numbers. Since the partial fraction

expansion coefficients are negative for both the left half and right

half plane poles, the time function corresponding to these poles is
+ o
non-positive. Using F(0) = f f(t)dt, where F(jw) is the Fourier

-0

transform of f(t), in conjunction with

n s + a m s — cC

i i
T (._._..___.) T ( )_]_
i=1 s + bi j=1 s - dj

gives

n m c
T (Ei) - 1 as the area associated with x(t) + y(t)

a
D
i §=1 7j

i=1

for this Z(s). Since these time functions are non-positive and the magnitude
of this area is less than 1, the given function is an allowed one for general
monotone nonlinearities.

The phase characteristic of this function is more flexible than the
Z(s) multipliers considered in [4] because it is possible to switch batk
and forth from a leading to a lagging function or vice versa if desired.
A typical phase angle plot is shown in Figure 2 for the particular case
n=2,m= 2, It is to be noted that the magnitude of the angle can

approach 90° as closely as desired.
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Example 1. Brockett and Willems [3] indicated that

2
s

G(s) = 3 2

s +as +bs 4+cs+d

with a, b, ¢, and d chosen such that the poles of G(s) lie in the
left half s plane was a worthwhile function for future dtudy since
their criterion did not apply to it. This G(s) is to be considered

assuming that k, is large but finite with the nonlinearity required

2
to be monotone. An angle plot of G(jw) + l/k2 is given in Figure 3.
Let 2(s) = €~s + p)(s + r)/(~s + q@) with p < q. Division of the
numerator by the denominator shows that this Z(s) belongs to the
function 1 class with n = 0, m = 1. The reason for this choide of
Z(jw) 1is that its angle lags at low frequency and leads at high
frequency, which is the required behavior if the angle of the product
function is to lie within the ¥ 90° band. The wariation in angle

for G(jw) + 1/k2 at low frequency can be handled by choosing p
sufficiently small. However, a problem is encountered in following
the variation from near + 180 to - 1800. First, let G(s) have four

real poles located at - a,, — a

1’ Y and - a,. Then Z(s)(G(s)+1/k2)
is with s = jow
(-s + p) (s + 1) [ % 1 4+ R(s)
€¢-s + q) (s +a))(s +a,)(s+ay)(s+ aa)’ k,

where R(s) is the even part of Z(s). The angle of the first term

above with g = a, ang r = a, is
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1 1

180o - tan e - tan-1 j:— -

o tan_ a
P 3 4

The value of p can be chosen small enough such that at low frequency
when the magnitude of the first term is equal to R(jm)/k2 which
itself is positive, the above angle is less than 90°. Since (1.0)is
satisfied, asymptotic stability in the large is guaranteed.

2

Next, consider the case of G(s) = sz/((s + 2 ;wms + wmz)x

(s + al)(s + az)) where [ < 1 and wo > 0. The angle of

Z(jw) G(jw) in this case with q and r chosen equal to a,

and a, respectively is

180° - tan ! %— tan T —B

As before, a suitable choice of p will make the angle of Z(jw)(G(jw) + 1/k2)
lie in the ¥90° band for all w and asymptotic stability in the large
has been showm.
2 2 2
Finally, let G(s) = s /(s” + 2 tw s + mm) . The angle of
Z(jw) G(jw) is, with r = q'= w

W W 42
1 -2t - 7L

;‘:’- +2tan } —2 o .

2
[1- (- 207
m

1

180o - tan

If ; > .5, and p suitably chosen,(1.1)1s eatisfied and asymptotic
stability in the large is demonstrated. This Z(s) will not satisfy

(1.1) for z<.5 and hence no information is available on the stability




.
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of the system. Fitts [5] has shown that periodic solutions exist
with ¢(o) = 03 and £ = .01 for the 2 patr complex conjugate pole
case. The author has obtained steady state oscillations with ¢(o)
an odd saturation function for ¢ = .045 and with ¢(0) an unsymmetrical
saturation nonlinearity for z = .075.
In summary, with a monotone nonlinearity asymptotic stability
in the large can be guaranteed for the given G(s) if the poles are all
real, if two are real and the other two complex, or if all four are

complex provided that z > .5.

n

2. 1+ z a, exp(bis) + as with the bi's being real numbers,
i=1 .

f
@ >0, and ) Iail < 1. If all the ai's are negative, this
i=1 =

multiplier can be used for a general monotone nonlinearity but if
some are positive, the nonlinearity must be an odd function. The

n n
angle of this Z(s) is tan_1 o 1 a; sin bow + aw)/(L+ | a

cos biw)).
i=l i-l

i
This multiplier is capable of providing a rapid change in phase shift
from near -90o to +90°, but the periodic nature of the exponential

part of this function can make it a difficult one to work with.
n
A useful special case results when 2 a; exp(bijw) =
i=]
n/2 n/2
3 z 2a, sin b, w with z 2|la,| < 1. The angle of Z(jw) for
i i i
i=1 i=]1
-1 n/2
this case is tan ~( z 2ai sin bi w+ o w) which is simpler than
=]

the general result. On the other hand, the angle variations in the

function are constrained; if a is a very small number, the angle
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lies in a t 45° band at low frequencies. The use of this class of
multiplier is illustrated by the following example.

Example 2. Dewey and Jury [2] considered the case of G(s)=40/s(s+1)(32+.8s+16)
using their criterion for monotone nonlinearities and showed stability
for nonlinearities having a slope restricted to (e, 1.43). The system

is stable for linear gains in the sector (e, 1.76). Because G(s) has

a pole on the jw axis, corollary 2 must be applied rather than the
theorem. From the root locus plot for 1 + eG(s), where € is a small
positive number, it is seen that G(s) is stable in the limit. From the
Figure 4 plot of the angle of G(jw) + 1/1.76, the angle lies outside the
t 90° band in the frequency ranges 0-2.75 and 2.97-3.75, lagging in the
former case and leading in the latter. Although the peak deviation
outside the ¥ 90o band is only 36o in the lagging direction and 16°

in the leading direction, the peak slope of the angle in making the
transition from outside the ¥ 90o band to the inside is about 60°/radian,
making it impossible to use a Z(s) of the function 1 class. The magnitude
of the slope of a Z(s) function belonging to the type 1 class is less
than or equal to the slope of the angle of the double pole function

2 tan-l w/a which is 2a/(w2 + a2). For w = a = 3, approximately the
values which would have to be chosen in attempting to use the function,
the slope would be about 20°/radian, less than half the required value.
Therefore, a function of the type 2 class is chosen in an effort to

show asymptotic stability. Since the required angle for Z(s) ie less
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than 450, and a leading angle followed by a lagging angle 1is required,
Z(jw) was chosen equal to 1 + 3.999 sin 1.118w + 10'1°jw. Comparing
this function with the time doméin condition (1.3) shows that ¢(o)

is required to be an odd monotone function. The 1.118 coefficient

was picked to give an angle for Z(jw) (G(jw) + 1/1.76) at w = 2.98,

the frequency at which a zero occurs on the jw axis for G(jw) + 1/1.76,
of ¥ 90°. The amplitude of the sine term was chosen close to 1 to

give a large change in angle while still satisfying the integral
condition (1.3)and the 10-10 coefficient was chosen so that the o jw term
does not come into play at low frequencies. The slope of the angle of
this multiplier at w = 3 is about 60°/radian. The plof of the angle

of the préduct function also given in Figure 4 shows that the angle
always remains within the t g¢° except for w = 0, 2.98, and « at which
frequencies the angle magnitude is 90°. Calculation of the real part
of the product function at w = 0 gives .738. 1If k2 < 1.76, the real
part of the product is positive at w = 2.98. At =, thds quantity is
1/1.76. Therefore, since (1llis satisfied with an inequality sign; all
the conditions of corollaries 1 and 2 are satisfied and asymptotic
stability in the large is guaranteed for slopes in the sector (e, 1.76)
for ¢(0) equal to an odd monotone nonlinearity.

In order to find an enlarged sector of assured asymptotic
stability for the general monotone nonlinearity, Z(jw) =1 - .95
exp(—1.045ju3 + 10_1ij was chosen for use with G(jw) + 1/1.7. The
reasons for the choice of this function and the parameters for this

case are identical with those of the previous case except that the

coefficient of the exponential was chosen to give a zero phase shift
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for Z(jw) in the middle of the transition region for the angle of
G(jw) + 1/1.7. The slope of the angle of this Z(jw) at w = 3 1is

about 30°/radian. Therefore, k, was reduced to 1.7 when it was

2
found to be impossible to satisfy (1.1)with the given form of Z(jw)

and kZ = 1.76. Figure 5 gives the pertiment plots for this example
which show that the angle of z(jw)(G(jw) + 1/1.7) is in the * 90°
band. At w = 0 the angle of the product is -90° but the real

part is 2,38 while at w = « the angle is 90° with the real part being.
(1-.95cos 1.045w)/1.7. Therefore, the conditions of corollary 2 are

satisfied and asymptotic stability in the large is guaranteed for

the general monotone nonlinearity with slope dn the sector (e, 1.7).

E. Proof of Theorem 1.1

Let the system be excited by initial conditions. The assumptions
on G(s) and on ¢(c) are sufficient to insure the continuity and Fourier
transformability of o(t), é(t), and ¢(t) on any finite time interval
[6] - [9]. Use will be made of these properties at several points

in the proof. First, it will be shown that

T
n
[ () + x(t) + y(e)) * (a"(t) - ¢ (£)/h,))e"(E) dt =

o

T
n

(1) [ @"® - eN () /ky) et (1.4)

o
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where c(Tn) is a positive number and * denotes convolution. The
variables on(t) and ¢n(t) are equal to their non-superscripted
counterparts in (0, Tn) and zero outside this interval. Let
x'(t) and y'(t) denote x(t) and y(t) respectively with the
impulses removed. The integral involving these functions on
the left hand side of (1.4) is given by

n ©

[T x"0) (@ e=2)=0"t-0) /K )" (A) an de +
(o]

—00

T
n

[ ] vy o) ") - ¢n(t—k)/k2) o7 (t) dr ot (1.5)
o o

since x'(A) = 0 for A > 0 and y'(A) = 0 for A < N. BRecause the
primed functions, on(t) and ¢n(t) are continuous functions of t,

and the integrand is non-zero over only a finite interval of time,

the order of integration may be interchanged [10] to give

T

(s} n

[ x') [ ") - 67 (ea) k) 87 (e) de ax +

—~—C0 o )

[ v ) [ @7 (e0) = 4T (e=0)/ky) o7 (e) dt an. (1.6)

(o] 0
u

With the impulsive component of x(t) given by z ay s(t + bi) and

i=1

v
that of y(t) by z cy §(t -~ di)’ where a

' b,, Ci’ and di are
j=1

i’ 74

positive numbers, their contribution to the left hand side of (1.4) is

T
u n
121 a, [ (@"(tHb) - 67 (evb ) /K,) o7 () dt +
= (o]
T
v n n n n ‘
121 ¢y £ (0" (t-d,) = "(t-d ) /k,) () dt . (1.7)
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Appearing in both (1.6) and (1.7) is an integral of the form

T

n
I = [ (" -T) - 8T - D/K,) 870 de
o]

(1.8)

where T is a real number. At this point a positive bound will he

developed on (1.8). Let (1.8) he rewritten as

T

n
n ¢.(t - T)
LT = [ (e =) - T———) ¢0() dat +

o )

Ta a ¢E(t -,
[ (it -T) - . ) 6 (t) dt +
o 2

T n

n p.(t - T)
[ -1 -+ ) 4 (t) at +
o i

T G I
[ (o (t = 1) = =) ¢ (t) dt
o 2

wvhere the + and - subscripts refer to the positive and negative
values of the associated functions, respectively: as an example
n . n n

¢+(t) is equal to ¢ (t) when ¢ (t) > 0 and zero otherwise. The

lemma may be applied to the first two integrals since on(t) and

(1.9)

¢n(t) are continuous functions of time that are zero outside (O, Tn)

the two functions forming the integrand of both integrals are

non-nepative and non-positive respectively, and
d(o-¢(o)/k2)/d¢(c) = [d(0-¢(o)/k2)/do][do/d¢(o)] =

[1 - (d¢(0)/dc)(l/kz)][do/d¢(o)] >0,

(1.10)
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showing that o-¢(o)/l7 is a monotone increasing function of ¢(o).

Applying the lemma gives

T n T n
n 6 (£t - T) n ¢ (t=T)
un < <0:(t -T) - ‘i;—j;-——) ¢2(t) at + [ (o7 (t-1) - —:;i:——ﬂx
o 2 o 2
T n T n
n o, (t) n ¢ _(t)
62(e) de < [ (di(t) - ~§?—") oh(0) dt + [ @h(e) - =) P ar
(o] 2 0 ?
Tn
= f (o(t) - -MQ-) ¢(t) dt . (1.11)
o ko

Using (1.6) and (1.7) gives for that part of (1.4) involving x(t)+y(t)
+oo u v
[ ') +y'ONIO) d+) alI(-b)+ | e,I(d,). (1.12)
~ =1 + 1y

Now, since x'(A), v'(}), ai and c, are non-positive, application

of (1.11) and (1.12) yields

T

n
[ (x) + y(e)) * (0°(8) = 0" (£)/ky)) o7 (t) dt >
[o]
o0 u v
f x0)+y )+ ) a  + b el 1(0) . (1.13)
—= {=1 j=1

Using (1.3) from the statement of the theorem it follows that the
left hand side of (1.13) is greater than -I(0) and hence that the
assertion of (1.4) is correct.

The next step in the proof is to apply Parseval's theorem to a
part of (1.4) and to use the frequency domain condition (1.1). Let
on(t) = o¢n(t) + cin(t) and én(t) = 6¢n(t) + &in(t) where o¢n(t) and

6¢n(t) are those components of on(t) and én(t), respectively, due to the
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*n \\‘ .
feedback signal -¢(t) and Oin(t) and o, (t) are due to the initial L
condition excitation of the system. Then
Ty
[ ((8(e) + x(£) + y(8)) * (a"(e) - ¢"(E)/ky)) ¢7(t) dt +
)

T T
n

nl
a [ oM(r) ¢7(e) dt = [ ((8(e) + y(£)) * (o "(E) - 07(£)/k,y)) 67(E) de +
o 0o

T T
n n
[ (x(e) % (0,7 () = ¢"(E)/k))) o"() dt +a [ o T(e) o7 (r) dt +
o (o)
Tn Tn
+ [ (@) + x(6) + y() * o "(e)) ¢7(e) de +a [ o "(r) ¢7(t) de.
o [o)

(1.14)

Several substitutions will be made in the integrands &n the right
hand side of (1.14). In the first and third integrals let c¢n(t) be
n*

(t) respectively where

* . .
replaced by ¢ n (t) and oén(t) by o

¢ ¢
o) *(r) = - F L [6(w) FL6™()]]
and
e n * -1 n
5,0 () =F (3w 6w FlO"(B)])

with F and F_l denoting the direct and inwverse Fourier transform
operations, respectively. The values of these integrals are unchanged
since the starred quantities are equal to their unstarred counterparts

*
in (O, Tn). The value of o n (t) for t > Tn does not affect the first

¢
integral since 8§(t) + y(t) = 0 for t < 0 and o"(t) = 0 for t > Th' The

latter reason also shows that the third integral is not influenced by

. *
the values of 0, (t) fort > Tn' In the case of the second integral

¢



x(t) being non-zero for t < 0 implies that o n(t) cannot be

¢

*
replaced by ¢ n (t) without changing the value of this integral.

¢

*
Therefore, the portion of ¢ n (t) for t > Tn must be taken into

¢
account in making the substitution. Let

o™ *(t) = o¢n(t) +o

d
6 (t) | (1.15)

¢

where o¢d(t) is that component of o¢

these substitutions the first three integrals on the right hand side

*
n (t) occurring in (Tn,w). With

of (1.14) are

T
n
J (@ + 30 * (0, () - M) /k,)) $7(e) ar
o
T T
n n* n n T, nx n
[ (x(t) * ( 0, (£) = 6°()/ky)) 67(t)dt + o [ o T (r) o7 (t) dt
[o] o '
T
n d n
- (0,7 (8) * x(£)) o7(t) dt . (1.16)
(o]

For the final step in the proof ‘a bound is required on the
last integral of (1.16) in terms of |¢n(t)|max, the largest value of
|e"(®)| 1n (0,T)). |o¢d(t)l 1s given by

t
| [ 8 " =) | ,exT (1.17)
[o]

where g()) = F_l(G(jw)). Because of condition b of the theorem, it is

possible to find two positive numbers q and r such that |[g(A)| < q exp(-r})).

Using this bound gives

t

lo¢d(t)| < {_T q exp(-rA) |¢"(t)] nax B =
n
(a/r) 16" exp(-rt) [exp(rT)-11, £ > T . (1.18)
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The lower limit on the integral has been changed to t - Tn since
6"(t) 1s zero outside (O,Tn).
The piecewise continuous and impulsive components of x(t) will

be considered separately. Since lx'(t)l < % exp(ft), using (1.18)

gives
o, "0 * x'(0) | <

T +t
n
&;ﬂ G| exp(£1) exp(-r(t-1)) [exp(rT )-1]dA

-0

"%??gi_?) ER O lexp(rT )-1] exp(-(r+f)T ) exp(ft)  (1.19)

0<t<T
- - =t

Using this result gives
T T
n

[ @00 *x'@) fmae <o)

nod
lo, " (t) * x'(t)|dt <
o ¢ -

max f
(o]

o1 2
: 3L(r(i)i) B (- ep-rT)IA - exp(-£1)) < M |67 (e) |

max

(1.20)

where Ml is a positive number independent of T .

n
For the impulsive case,
o d(t) * x(t) = § a, o d(t#b ) (1.21)
¢ =y 170 1 ‘
and
T T
n d n v nog n
L[ 40,%(0) * x(0)) o (t)de| < § la,| [ o %¢t+b,)e™(t)]dt.
o ¢ i=1 1 o ¢ 1

(1.22)
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If b1 < Tn’ the use of (1.1%) in the right hand side integral of (1.22)

gives
Tn ' T
l d

n
[ |o
o ' ¢

(t+bi)¢n(t)dt] < % 16" () |2 [exp(rT )-1] [ exp (~r(t+b ))dt
max Tn-bi

(1.23)

The lower limit on the right hand side integral is Tn—bi since

o¢d(t+b1) =0 for t < bi - Tn' Evaluating (1.23) gives

2 2
-35 |67 (0)] %y [lmexp(~rT )] (1-exp(-rb)] < M, [6™0)|* ~ (1.24)

where M21 is a positive number. Finally, if b1 > Tn’ the left hand

side of (1.23) is less than or equal to

T
n

L 187 e)]? _ lexp(rT )-1] | exp(-r (e e - fgl¢“<t)lzmax *

[exp(-x(b, - T)) - exp(-r b)][1 - exp(-r T )] < M [o™(e) |

(1.25)

where M31 is a positive number. Using (1.20), (1.24), and (1.25) gives

T
n

u
S (0,2(t) * x(©)) $"(e)ael < (o) + L eyl ERGIE.

=Mt | (1.26)

where M3 is the largest of the MZi's 31's

number independent of Tn' That is the desired bound.

and M and M is a positive

Since ¢n(t) is zero outside (O’Tn)’ the limits on the first 3

integrals of (1.16) may be changed to (-~,»). Also, because of the



conditions on the various functions involved, Parseval's Theorem is
applicable to these integrals. Its application gives

e n* n n

[ (@) + x(8) + y(©)) * (0,7 (£) = ¢ (£)/k,)) 67(e) det +

-0

S n* n 1 e
o [ 5 oT(e)de = - = [ ((HXUw) + Y(JW) (CUw) + 1/k,)
+of welw) [FIe™()]] 2w (1.27)

Since the imaginary part of the integral on the right hand side of (1.27)
is zero, (1.27) may be rewritten as

40
- L[ Re( + (W) + Y(W) + ajw) (CUw) + 1/ky) [P (6)] ] du.

(1.28)

From (1.1)it follows that (1.28) is non-positive. Combining (1.4),
(1.14), (1.16), (1.26), (1.27), and (1.28) gives

T

n
Ty [ (@"(t) - 6" (®)/k,)a(t)dt +ad(T ) ~aB(0) <
o
T T

noog h n n n
|f (0,7 (£) * x(£)) ¢ (e)de| + [ (o7 (8) +(x(1) * 0 (1)) +
[¢] (o]
(y(t) * 0,7 (t)) + a0, (£)) ¢"(t) dt] (1.29)

< Ml¢“(t)|2max +lo%(e)] €1.30)

where
o

P= [ Jo (8) + x(t) * oy(t) + y(t) * o, (t) + ac, (£) ]dt
o)
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and
o(T )
o(T) = [ ™ (o) do.
(o]
Therefore,
o1 <3 I oM 0]+ Rl e)| 1+ o(0). (1.31)

Using the approach given in Lefschetz [11], 1let Tn be chosen such that
fcbn(t)lmax occurs at Tn' Then with the first part of condttdon c
hélding, it follows that o and hence ¢ (o) are bounded; tf this were
not the case, inequality (1.31) would not hold for large values of
|o|. If the second part of condition c holds,ba quadratic Liapunov
function may be found using the approach of Rekasius [12] that

shows the boundedness of ¢ and ¢ (o).

Since the right hand side of (1.31) is bounded, it follows from
(1.30) that jT“ (o™ () - ¢“(t>/k2) " (t)dt is bounded, from which
asymptotic st:bility in the large follows, using the arguments given
in Aizerman and Gantmacher [13]. This completes the proof of the
theorem.

In order to prove corollary 1, the lemma is applied directly
to (1.8) to give |I(T)| < I(0) instead of I(T) < I(0). (1.13) then

becomes
T

n
[ ] (o) + y(e)) £ @"(e) - 0™ (0)/k,)) 6™(e)de| <
(o]

oo u v
[ A=+ ly0har+ 7 Ja |+ T e, |1 10). (1.32)
=1 1 yap 1



Using the condition of this corollary, it follows that the left
hand side of (1.32) is less than or equal to I(0), from which (1.4)
follows. The remainder of the proof is unchanged. This completes
the proof of corollary 1.

To prove the assertion of corollary 2, it is first shown

that if

Re Z(G + l/kz) 3_62 > 0,

Re Z(G/(1 + 6) + 1/k,) > 6, > 0

3>

for € sufficiently small. 63 is a positive number. By a straightforward

calculation Re Z(G/(1 + €G) + 1/k2) is

Re Z (G + 1/k,) + e(Re Z ) [jc]? a + e/k,) + 2(Re G)/k,]

(1 + cR)2 + (eX)2

The first quantity in the numerator is non-negative. Since Re Z 1is
non-negative, the second quantity in the numerator may be negative if
—ZKkz +e€) < Re G < 0. For this interval € must be chosen small enough

such that the numerator is positive. This is guaranteed by having

=8,k

2Re Z Re G

€ <

in the interval. Let the linear transformation ¢1(o) = ¢(0) - €0
be applied to the system. Then\Gl = G/(1 + € G). The stability of
the transformed system will guarantee the stability of the original
system. If ¢ is chosen to be less than both § and the right hand
side of the ¢ inequality, the transformed system will satisfy the

conditions of the theorem for the noncritical cases. Q.E.D.
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The proof of corollary 3 follows directly from the proof
of the theorem with x(t) = 0. (1.31) becomes @(Tn) j_%-[¢n(t)|max + ¢(0).
Since ¢ (o) is a monotone increasing function of o, for |o| sufficiently
large the left hand side of this inequality will become greater
than the right, showing that o(t) and ¢(o(t)) are bounded. The

remainder of the proof is unchanged.

r. Theorem for a Nonlinearity With a Monotone

Bound

This theorem is an improved version of one given in [4]. The
two improvements consist of permitting Z(s) to have a corresponding
time function that is non-zero for t < 0 and of taking the symmetry
of the nonlinearity into account, resulting in x(t) and y(t) being
allowed to take on positive as well as negative values.

Theorem 1.2. For the system given in figure 1 let the following
conditions hold:

a. A¢m(c) g < ¢(o) o < B¢m(o) o, where A and B are real

numbers satisfying 0 < A <1 and 1 € B < =, ¢(0) = ¢m(0) = 0,
o ¢(0) < k oz‘where k >0 and o ¢m(c) > 0 for g ¥ 0,

d¢(0)/do is a continuous function of o, ¢m(c) is a
continuous monotone increasing function of ¢ having an

odd part ¢mo(o) that satisfies |¢m(c)| §_C|¢mo(c)| and
[450() | < Dlo @]

b. Conditions b and ¢ of theorem 1.1.

Then a sufficient condition for asymptotic stability in

the large is that
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Re [Z(jw) G(jw) + E (G(Jw) + 1/k)] > 0 (1.33)

for all real w where E is a non-negative number. Z(jw)

is defined as in (1.2) but (1.3) becomes

&) +y )y de + 7 a; +7 c:] -

=00

B 7, - - -
N [/ (x'"(t) +y' (t))de + ) a; + ) e

00

g1 <1 (1.34)

+ + + +
where x' (t), y' , a; , and c, are the positive portions or values

of the corresponding non-superscripted functions or numbers and

x' (t), y' (D), ai—, and c, are the negative portions or values
of the corresponding mon-superscripted functions or numbers.
Proof. Starting with (1.4) of the proof of theorem 1.1, let this
equation be replaced by

T Tn

n
[ (8(0) + x(0) + y(8)) * o™(6)) ¢"()dt = e(T) [ o ()o"(t)at
(¢)
(1.35)

as the condition to be shown. Repeating the steps used to obtain

(1.6) and (1.7) gives

0 + _ 'Tn n
J 7)) +xT0)) [ ot - ) ¢"(t)de dr +
(o]

T
el n
[ o) #9700 [ ace - 2) 6(E) dt da (1.36)
[o] [o]

and
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T T
+ n n n - n n n
I a [ &t +1b) ¢ (D)t +1 a; [ ot +1b)e(r) de
(o] [s]
T T
+ n n n ! - nn n
+1 e [ oi(t-d)) ¢ (t)at + ) ¢y [ o"(t-d )¢ (t)dr. (1.37)
[o] [o]

T
I(T) then becomes I(T) = f n on(t -T) ¢n(t)dt. At this point the
o
proof differs from that of theorem 1 for it is desired to develop
both positive and negative bounds on I(T). First a bound is

developed on |I(T)

T
n
1M} < B [ |o"(t - T) ¢mn(t)ldt
[}

T T
n n
n n n n
< BC £ lo%(t - 1) o__"(t)|dt _<_BC£ o' (t) ¢ "(t)dt
(1.38)
where use has been made of the lemma. ¢mn(t) = ¢mn(o(t)) and
n n
¢mo (t) = ¢mo (o(t}). Continuing the development gives
T T
% oa n T n n
BC [ o"(t) o "(t)dt < BCD [ o T(t) ¢ "(t)
o o
Tn
< B2y oMoy eMoa (1.39)
o
The negative bound on I(T) is then
1 > - 22 1) . (1.40)

) b = & 9 O W @ B oW G g W S S o e
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For the positive bound the same procedure as in theorem 1 is used

to give
T T T
n n n n n n n n n
[ =D (rar < [ o +(ET) 6 ()de + [ ol (e-T)¢" () de
(o] o (o}
T T
<B | " "(t-T) ¢ “(t)dt + B [ ’ "(e-T "(e)d
P o, ¢4 (E)dt ] o_(t-T) 6. (t)de
T
T on n B " a n
<B [ o™(t) ¢ (DAt <= [ o7 () ¢"(t)dt . (1.41)
(o] (o}

Using these two bounds in (1.36) and (1.37) gives

T
n

[ x(e) + y(r)) * a"(t)) ¢"(t)dr >

[¢]

400

-2 @t rytony e ] " +1] e, 71 1(0)
B +e - - - -
Lo B S COL A eV STED ALV SR B (O I (1.42)

Using (1.42) and (1.34) gives (1.35). The remainder of the proof is

similar to that of theorem 1 with the left hand side of (1.14) replaced

by

Tn Tn

[ () + x(t) + y(t)) *0"(t)) "(t)dt + a [ &"(t) o™(t)de

(o] : (o]

Tn
+E [ (o"(t) - ¢"(t)/k) 6" (t)dt . (1.43)
(o}

Q.E.D.
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The frequency domain condition (1.33) is certainly not as
easy to apply as (1.1), (1.33) was obtained because of the necessity
of using (1.35) in order to apply the various conditions on 4¢(0).
An example of the application of this theorem is considered next.
Example 3. Let ¢(o) be an odd function defined for positive

values of o by

¢(0) = o , 0 <o <1.25
= -0+ 2.5 , 1.25 < g < 1.5

= (50¢/3)/(1+0) , 1.50 < o

and let G(s) = K(s + 4)(s + 50)2/(s + .1)(s + 1)(s + 1000)°, with K

being large but finite. It is assumed that the kinks in the 6 (o)

curve are smoothed out so that the derivative is a continuous

function of o. A plot of this nonlinear characteristic reveals

that a convenient choice is to take ¢m(c) as an odd function equal

to‘¢(o) for positive values of o except for 1.25 < o < 3.01 for

which interval ¢m(o) = 1.25, ¢m(o) is then a continuous odd

monotone increasing function of ¢. With this choice A= .8, B=C =D =1

4o
and (1.34) becomes [ (|x(t)| + |y(t)])dt < .8. Since K is to be

large but finite, let-E = 0 to give Re Z(jw) G(jw) > 0 as the
criterion to be satisfied. G(jw) has an angle that lies outside
the ¥ 90° band in a lagging direction at low frequencies, at higher
frequencies the angle approaches + 90° and then - 90o at very high

frequencies. Because of this behavior, the Popov criterion will not

show stability. Let Z(s) = (s + 1)(s + 1000)/(s + 4). This
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particular function has the proper phase characteristic, that is,
leading at low frequencies, almost zero at intermediate frequencies,
and then leading at high frequencies to give a product with an angle
in the * 90° band. Since 2(s) G(s) = K (s + 50)2/(s + .1)(s + 1000),
it is seen that Re Z(jw) G(jw) > O for all w. Expressing 7(s) in

a partial fraction expansion form gives Z(s) = s + 997 - 2988/(s + 4).
The left hand side of (1.34) is .937, and hence this condition is
satisfied. Therefore, the given system is asymptotically stable in

the large.

-G, Conclusion

This chapter has presented two theorems which allow the
Z(s) multiplier to correspond to a function of time that is non-zero
for t < 0 as well as for t > 0. This innovation solves the problem
of obtaining a Z(juw) whose angle varies with equal freedom
between 0° =~ +90° and 0° - -90°. The generalized RL Z(s) multiplier
considered shows that a nonlinear system having a monotone non-
linearity with a slope in the sector (O,kz) is stable provided that
the system is stable for linear gains in the sector (0,k2) and
provided that the angle changes slowly enough with frequency.
Although this work gives improved results, it is not clear how close
these results are to the actual absolute stability limit. Additional

stady is needed to resolve this matter.
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While the two Z(s) functions discussed appear to be quite
useful, if it is not possible to show stability with either of these
two, it is not clear how one should go about generating additional
Z(s) functions with more desirable characteristics, other than to
use trial and error. The reason for this is the need to consider
simultaneously both the time ;nd the frequency domain behﬁvior of a
possible candidate for a 2(s) function. This appears to be a
worthwhile area for further research.

Condition ¢ of theorem 1.1 is one way of guaranteeing the
boundedness of o(t) and ¢(t). If a certain nonlinearity does not
satisfy this condition, the theorem may still be applied provided that
a Liapunov function can be found that will show the boundedness
of the state variables of the system. However, finding a

suitable Liapunov function may be a difficult task.
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1. Appendix 1

Lemma. If fa(t) and fb(t) are two continuous time functions which
are zero outside the time interval (0, Tn), fb(t) = h(fa(t)) where
h is a plecewise continuous monotone increasing function of fa’ and
if either fa(t) and fb(t) are both always non-negative or non-

positive or h is an odd monotone function with h(0) = 0, then

T

n
o[ (£,(8) £,(t) = |£_(t) £,(t + T))dt > 0

for any real value of T.

Proof. Given a value of T > 0, let the summation

n

) |£,(81) £ (61 + T)| & (A1)
1=1

be formed where & is a positive number chosen such that T/§ is an
integer and n is chosen such that n§ = Tn - 61 where 61 is a

positive number less than 6. Let a ranking of the magnitudes of

the values of fa(t) and fb(t) that can appear in the summation be

set up such that |fa1| > |fa2| :_|fa3|... for fa and a similar ordering
lfbl' > Iszl z_lfb3|... holds for fb. Since h is monotone increasing
and either an odd function or fa(t) and fb(t) are both always non-

positive or non-negative, values of lfail and with the same

€45
numerical subscript occur at the same time or the ranking can be
arranged such that they occur at the same time if two or more magnitudes

are equal, Using the ranked magnitudes, a table of product values
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that may appear in the summation 1s formed as indicated below,

£y, £y, EANPY Ifbj|... £,
Ifal' falfbl lfalfb2l
lfaZ‘ 'faZfbll faZbe
|£5!
I£,4!
lfanl anfbn

The diagonal elements in this table correspond to the terms that
appear in (Al) with T = O. For any value of T, the terms-lfail
and Ifbil can appear only once, if at all, in the summation. This
means that of the product elements appearing in (Al), only one
element can occur in a given row and one element in a given column
in the table of product values., Also, for T # 0, the summation

terms appear as off diagonal elements in the table. Next, by

using a row and column counting process it will be shown that
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n
L £ (61) £, (81) > 121 |£,(81) £, (61 + )| (A2)

il t~123

for T # 0.

Consider the elements on the right hand side of (A2) that
appear in the first row or first column of the table of product
values. The maximum possible number is two. If it is zero or

one, an inequality falfbl >N, falfbl :_|f al bj' or f lfbl lfaifbll

is formed. The first row and the first column are then removed,
giving a reduced table of product values. If there are two elements,
it it necessary to consider three cases.

a. The two terms are 'fajfbl| and |f In this case the

alfbjl'

lfbl and f 1fbj are used to give the

inequality f_,f, . + ajfbj > |f a f1

two elements possible in the first and jth rows and columns have

two diagonal terms f

| + |f 1fbj|. Since the only

been bounded by the diagonal terms associated with these rows
and columns, the first and jth rows and columns are removed,
giving a reduced tahle of product values.

b. The two terms are |f | and |f | with 1 < §. An

aifbl alfbj

inequality that may be written is falfbl + £ fbi > |f

If there is no term in the ith column, |f

|+ |f

ai” bl lfbi '

al bi! is used to bound

| £ |, since |f lfbi| Z-|fa1fbj|’ giving as the desired inequali?y

alfhj

farfpr * Fagfor 2 1farfprl + 1Ea1fp ]

columns are then removed to give a reduced table of product values.

The first and ith rows and

If there is a term in the ith column, say {f ], the l

ak bi f ak bil

and |f | terms are bounded by the ]f I term and the |f

alfbj ak b1l
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term, giving the inequality |f | + |f f .|+ If

a1fb1 akfbj‘ > |, b1 aclpe !l

Combining this bound with the one involving Ifaifbll gives

f

£ f .+ |f £ f .| + Ifalfbj| + |f | as the

atfpr * faifog akfoyl 2 1Ea1Fp
overall inequality resulting from this step. The lf

akfbi

akfbjl term has
been borrowed to obtain the bound. This term is not an element of
the summation since the kth row and jth columns by hypothesis each
have one element. A reduced table of product values is ohtained
by deleting the first and ith rows and columns and adddmg the lfakfbjl
term as one to be bounded by the remaining diagonal elements. The
array obtained has the same properties as the original array with regard
to each row and column having only one element. Therefore, the
process may be repeated on the reduced product value table.
c. The two terms are |faifb1| and |fa1fbj| with 1 > j. The
strategy of b is repeated with the roles of the ith and jth
column being taken by the jth and ith rows, respectively. The
process is then applied to the first row and column of the reduced
table of product values and repeated until there are no terms
left in the final reduced table. Adding together the ineaualities
obtained at each stage of the process gives the left hand side
of (A2) plus additional terms greater than the right hand side
of (A2) plus the same additional terms. Upon cancelling the common
terms, (A2) results. From (A2) it follows that

n

§ 121 (£,(61) £, (81) - |£_(81) £, (61 + TV)> O,
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Since
T
n
of (F(OF (1) - [£ (6)f, (¢t + T)fdt =
n
1-2-1 (f,(81) £,(81) - lfa(éi)fb(éi + T)])6 + ¥,

where F is a real number that can be made arbitrarily small by
a suitable choice of §, taking the limit as § » o gives the
assertion of the lemma for positive T. A similar discussion

shows that the lemma also holds for negative T. Q.E.D.
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IV CHAPTER II. BOUNDS ON THE RESPONSE OF AN AUTONOMOUS

SYSTEM WITH A SINGLE NONLINEARITY

A. Introduction

This chapter is concerned with the calculation of bounds
on the response of the single nonlinearity system of Figure 1.

For the first theorems it is assumed that the external input
to the system is zero and that the system 1is excited by initial
conditions only. Then, Fourier transformable inputs of a certain
class are permitted in later theorems. If the input is itself
bounded, the bounds which are calculated on the response enable
the showing of Liapunov stability but not asymptotic stability.
The bound that is determined is on the function ¢(o(t)) and usually
takes one of the forms shown in figure 6. Once a bound has been
obtained on ¢(oc(t)), a bound can be calculated for o(t) for
specific nonlinear characteristics.

Pertinent references include the survey paper by Kalman and
Bertram [14] in which it is pointed out that an exponential bound
can be obtained on the response by the use of Liapunov functions.
The maximum value of V¥/v = -n is calculated over the space in which

the response is confined. The bound is then v(t) < v(0) e_“t. The

bound on v(t) can then be converted into a bound on the system variables.

Sandberg [15] considered the problem of a time varying nonlinearity

confined to a linear sector and gave a frequency domain condition



BOUND

ON

0lap]

41

T

Figure 6. TypicalBounds on ¢(o(t)).
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guaranteeing that the state variahles approach zero exponentially
with time. 1In the single stationary nonlinearity case with a

zero lower bound on the nonlinearity, this frequency domain

condition is equivalent to Re G(jw) > N, which is a rather restricted
criterion. Tsypkin [16] obtained an analogous result using a Popov
type approach for a sampled date system having a single nonlinearity.
Using a Liapunov approach, Yakubovich [17] showed that for a nonlinearity
confined to a sector (0, k), if Re G(jw - a) (1 + ojw) + 1/k > 0, then
the response of the system satisfies |o(t)] :_Me—atio(0)| where M

is a positive number. This last result is similar to the Popov
criterion except for the shift in the argument of G(jw).

Although the criteria of the last 3 references show the
existence of a bound of the desired type, these references do not
consider the problem of calculating a wvalue of M. Also, the
corresponding frequency domain stability criteria for these works
are-more restricted than those given in chapter 1. Therefore, the
main object of this paper is to develop theorems giving bounds on
the response of systems using the approach employed in the development
of the stability criteria of chapter 1. Once a system has been shown
to be asymptotically stable in the large using these criteria, it
will then be possible to calculate a bound on the response using the

results of this chapter.
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The first three theorems deal with those systems in which it
is possible to show stability with x(t) = 0. Theorems 2.4 and 2.5
give bounding expressions for those cases in which x(t) # 0. Since
for this case a bound must be available on the response of the
system of the form ¢(t) §_M|¢(t)'max, where M 1s a positive number
and |¢(t)|max is the larpgest value of 4(t) in (0, Tn)’ the application
of these latter two theorems requires somewhat more computation than
the first 3. The bounds for these first five theorems are calculated
using a "completing the square' approach 0f Aizerman and Gantmacher [13].
Under certain circumstances an improved bound ean be found using the approach of
Lefschetz [11]. This 1is used in theorem 2.6 and 2.7. Theorem 2.8
gives a bound on the response with an external input applied and
theorem 2.9 considers a special case which arises when dealing with
systems having lag compensators. Finally, the possibility of obtaining
an improved bound when the system is in the linear region is

discussed.

B. The Theorems

Theorem 2.1. For the system of figure 1 excited by initial conditions
only let the following hold:

a. 0 < d¢(0)/do < k, where k, is a positive number, ¢ (o) and

2 2
(o - ¢(0)/k2) = 0 only for 0 = ¢(c) = 0, and d¢(c)/do be

a continuous function of o.
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b. G(s) = N(s)/D(s) with the degree of N(s8) at least
one less than the degree of D(s) and with the zeros
of D(s) having negative real parts whose magnitude is
greater than or equal to the positive number a.

c. Re H(jw) = Re[c(l + Y(Jw))(G(jw - a) + l/kz) + djw G(jw - a)

+ adG(jw - a)] > b > 0

where b, ¢, and d are positive numbers, y(t) is composed
of delayed impulses and a pilecewise continuous function

that satisfies y(t) < 0 for t > 0, y(t) = 0 for t < O and

oo

[ ly@)| e*fae <1 . (2.1)
(o]
Then -
o(Tn) -2aT f mz(t)dt o (0)
8(T) = [ 6(o)do < e T [—————+ [ 4(0)do ]
n o 44 o
(2.2)

where m(t) = F_l [P(Jw) Q(Jw)] with

at[

p(t) = e2F[(c + 2ad) cin(:) +d 61“(t)] + c(oin(t) et x yen™®

and 0(jw) is defined by 1/Re H(juw) = Q(jw) O(~jw). cin(t) 1s equal
to the inftial condition component of o(t), oi(t), in (O, Tn) and

zero outside this interval. Similarly, &in(t) ie equal to the
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initial condition component of éi(t) in (O, Tn) and zero elsewhere.
(cin(t) * y(t))n is equal to oin(t) convolved with y(t) in (0O, Tn)

and zero elsewhere.

Proof. First it 1s desired to establish the non-negativeness of

certain integrals which play a preminent role in the development.

Using integration by parts with é(t) ¢(t) betng integrated gives

T
n
[ e 5(e) a(ryae = 220 o(1 ) - 0(0)
)
Tn
-2a [ e’ a(r)dr . (2.3)
o)
Also,
T T
n 2at n 2at
2a [ e o(t)e(t)dt - 2a [ &% e(t)dt > 0 (2.4)
) o
o(t)
since o(t)¢(t) and ¢{t) are both non-negative and ¢(t) = f ¢(o)do < o(t)e(t)

(o]

because of the monotone increasing property of ¢(c). Adding the first

integral of (2.4) to both sides of (2.3) and rearranging gives

2aTn Tn 2at Tn 2at
e (T ) + 2a [ e o(t)e(r)ar - 2a [ e“Tre(t)dt
(o] (o}
Tn Tn
= [ B (et + 2a [ 22T o(e)e(t)dr + 0(0)  (2.5)

o o
where the sum of the second and third terms on the left hand side of
(2.5) are non-negative by (2.4).

The second relationship to be established is
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T
" 2at . n n n
[ e (07(r) - 67 (t)/k,) 67 () dt +
o
Tn '
t
[ e ) * (") - 67 () /k,)e*)) #(e)de 2 0. (2.6)
o
v
Let the impulsive component of y(t) be given by z cj §(t - dj)
j=1
where the cj's are negative numbers and the dj's positive numbers.
Substituting this component into the second integral on the left of
-ad +ad

(2.6) and inserting an e ] inside the integral and e 3 outside

gives
v ad, n 2a(t-d) _
) cy e J [ e ] (o (t - dj) - ¢n(t-dj)/k2)¢n(t)dt.
j=1 o

(2.7)

With the piecewise continuous component of y(t), y'(t), substituted

into the same integral, the result is

T ©

n
[ %) [y (en) = e (e /iy Y

(o] (o}

dx dt . (2.8)

Interchanging the order of integration and inserting an e-aA inside
+
the integration with respect to t and e ak outside gives

T

© n
[ vy e
o] 0

RLIC R PR 8" (£=1)/k,) #"(£)de dhs

(2.9)

Appearing in both (2.7) and (2.9) is an integral of the form

Tn

I eZa(t-—A) (
o

intggral may be rewritten as

oM (t-1) - ¢n(t-x)/k2) 6" (t)dt where A > 0. This
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T
n

2a(t-2) n n. o n
of e (@h(t =x) - o3(t = \)/k,)  el(e)de +

T
n

[ 22N (R gy - e - ) /k,) 07 (t)de +
(o]

T
n

[ o N TS T M) /ky) o5 (€)de +
[o]

T
n

S R Y IR VIR IR SV S T LU (2.10)
o

The plus subscript indicates that the function possessing it is equal

to the non-subscripted function when the non-subscripted function is
positive and zero otherwise. An analogous definition applies to the

use of the negative subscript. For example, ¢?(t) = ¢n(t) for ¢n(t) <0
and ¢E(t) = 0 for ¢n(t) > 0. (2.10) is certainly less than or equal

to the first two integrals of this equation. Applying lemma 2 gpiven

in the appendix of this chapter to these two 1ntegrais gives that

(2.10) is less than or equal to

T
n 2at, n n n
£ e T (dh () - ¢L(t)/ky) o (t) dt +
T T
% 2at, n n n % 2at, n n n
[P - R/ tmde = f o e®25 M) - ¢ () /KN ().
o o

(2.11)
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Using the positive bound (2.11) in (2.7) and (2.8) gives as

a lower bound for the sum of these integrals
T
v ad hd n
() c,e 34 [ e y(orae [e22R N (0)-6" (1) /K, )6 (D) de
k| 2
j=1 o o
(2.12)

Using (2.1) and (2.12) in (2.6) shows that (2.6) holds.

At this point the necessary time domain eelationships have
been obtained. The next step is to make use of Parseval's Theorem |,
in converting the time domain integrals into corresponding integrals
in the frequency domain.

Let o¢(t) and 5¢(t) be those components of o(t) and 8(:),

respectively, due to the feedback signal -¢(t). Then

Tn 2at °n n '
d [ e o (t)e"(t)dt + 2da |
(o] (o]

n
e23t Py eP(t)dt

T
n
re [ €5 + y(e) * L") - o™ () /ke D) o (E)dt =

T
% 2at :n n no2
a [ e 0, (£)¢(t)dt + 2da [ e

at 0¢n(t)¢n(t)dt
o o}

se [ e (s +y@®) * [0 (1) - 67 (D) /ke ] $T ()

T T

n
+d [ 22t oin(t)¢n(t)dt +2da [ e2at oin(t)¢n(t)dt

(o} (o]

re [ e (B® +ym) * [o,"() ] ¢T(e)ar . (2.13)
4 |
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In the first three integrals on the right hand side of (2.13) let

* . . *
o¢n(t) be replaced by o n (t) and o¢n(t) by o n (t) where

¢ ¢

c¢n*(t) = F—l[-G(jm) F(0¢n(t))]

and

5,7 () = F L [-4u6(u) Fo,N(0)]

In the first two integrals since the starred and unstarred quantities
are equal in (O, Tn) and'since ¢n(t) is zero outside (O, Tn), this
change can be made without altering the values of these integrals.
For the third integral the identical reasoning plus &(t) + ¥(t)

being zero for t < 0 shows that the substitution can be made in

this case also without changing the value of the integral. A

second desired médification is to replace the O, Tn limits on all

6 of the integrals on the right hand side of (2.13) by —«, =; once
again this is justified by the nature of ¢n(t). This reasoning also
allows the last substitution which is to be made in the third integral,
namely the replacement of ((6(t) + y(t)) * [oin(t)eat]) by

((o(t) + y(t)) * [cin(t) eaEDn. The second function is equal to the
first in (0, Tn) and zero elsewhere. With these changes (2.13)

becomes
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4o +
a [ et 6¢n*(t)¢n(t)dt+2da [ %t o¢n*(t)¢n(t)dt

-00 -—00

oo
v [ SN +ye) * 16,7 - oty ke e (e

-00

40 2 . oo 2
+ad [ % Mo de + 2da [ T o M(0)e"(B)at
+oo t n
+c [ e (s + yr)) * [oin(t)eat]) o (t)dt . (2.14)

Applying the Parseval Theorem to (2.14) amd using the fact that only
the real parts of the first three integrands give a non-zero contribation
to the values of these integrals gives

<40

-5 /]  Re [d(w - a) G(ju - a) + 2da G(jw - a)

-00

¥e 1+ YU (60 - a) + 1/k)] [Fe (e [? do

1 o0
+ o f F[de

-0

a t

t &ié(t)+ 2da e? oin(t) +

+ c((8(t) + y(£)) * [0,"(®©)e* D™ F(6"(£)e®) du . (2.15)
Using c, the first integral can be wewritten as

e t, 2 '
[ Rre H(3w) |F("(t)e?*") | duw (2.16)

-]

1
a3 L
=

and the second as

4 -
L [ repm) Feh® €Y du (2.17)

-0
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where the p(t) is defined in the statement of the theorem. Using
the approach given in Aizerman and Gantmacher [13] an upper bound
that can be obtained for (2.15) with (2.16) and (2.17) substituted

into it is

oo 2
/ IEGEN|” 4 (2.1R)

ReH(jw)

00 |~
=

From the definition of P(juw), Q(jw), and m(t) given in the statement

of the theorem, an application of Parseval's theorem gives for

(2.18)

- ]

%- [ m?(t)dt . (2.19)
[o]

Using (2.5) on the left hand side of (2.13) together with the

bound on the right hand side of (2.13) given by (2.19) results

t

in

2aT Tn 2 T

n
de ™ o(r)+2ad [ e At G(t)e(t)dt - 2ad [ e
(¢] 0

23t & yae

T
n

+ef R + y(0) * ™) - " () /k,y)e W (e)dE <
(o]

(<]

(1/4) [ mi(e)dt + de(o). (2.20)
[o]

Since the sum of the second and third integrals is non-negative,

the desired bound

i m? (t)dt
S+ 2(0)] (2.21)

-2aTn
o(T ) < e [

foliows . Q.E.D.
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Theorem 2.2. Let all of the conditions of theorem 2.1 hold and in

addition let ¢(o) be an odd function. Then the assertion of theorem
2.1 holds with y(t) permitted to take on positive as well as

negative values.

Proof. The only difference in the proof ag compared with that of

theorem 2.1 is that in place of (2.6) it is desired to show

T
n 2at, n

[ ") - oM () /xy0(e) at -

o

T
n

| [ e y(e) * ((™e) = " (0) ke N (e)at] 2 0 (2.22)
o}

To show this, lemma 2 for the odd function case is applied to give

T

n
| ] BN e -y - 6" - D/ ot <
(o]

T
n
[ ) - Stk eN(nyar. (2.23)

o}

Using (2.23) in (2.7) and (2.8) gives

T
n

| [ e (r(er * ("(1) - " () /k,y) N T (e)de| <
o

M4 adj ®  at Tn 2at n n n
(D lele 3 + ] lyrmlar) [ ¥ ®) - M )/ke"()ar .
j=1 o

(2.24)



(2.24) shows that (2.22) holds. The remainder of the proof of

the theorem is unchanged. Q.E.D.

A Simpler Bound From the Computational Standpoint

It is possible to modify (2.2) in order to obtain a simpler
form for computational purposes. As the bound stands, p(t) is
zero for t > Tn' This means that £w mz(t)dt has to be calculated
for each value of Tn' Rather than using the transform of this
truncated p(t) in the development, it is possible to use the
Fourier transform of the untruncated function directly independent
of Tn. While the original approach should give an improved result
for small values of Tn’ the latter approach definitely requires
less computational effort which is important in hand calculation.
Theorem 2.3. Let the conditions of either theorem 2.1 or theorem 2.2

hold. Then the assertions of these theorems hold with P(t) replaced
by

p(t) = e®F[(c + 2ad) o,(t) + d 0 ()] + c(o (£)e" * y(e)),

(2.25)

Proof. Referring to (2.14) it is seen that the change in the

definition of p(t) does not affect the value of the last three

integrals on the right hand side of this equation. Also, since

the new p(t) is Fourier transformable due to G(s) having poles

to the left of s = -a and due to (2.1) holding, it‘follows that the

remaining steps in the proof can be carried out without any alteration.

Q.E.D.
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1
Example 1. Let G(s) = G+ (s +35)° kz 50, and ¢(o0) be a

monotone nonlinearity. It is assumed that this system is excited

by a unit impulse input. The Popov criterion shows that this system
is asymptotically stable in the large. Since the Popov criterion

is applicable, it is reasonable to attempt to satisfy the real

part criterion with Y(jw) = 0. Since the pole of G(s) closest

to the origin is -1, a must be chosen less than 1. Let a be chosen
arbitrarily as .5. The real part criterion c¢ is then .with ¢ = 1

(1 + .54 + diw)
Jut.5) (Juts.5)

Re [( 1+ .02>0.

IF d is chosen such that the zero of the term im brackets is located
between the two poles, the real part of the first term will be non-
negative and c is satisfied. Setting d = 1 gives

(s + 1.5)
(s + .5)(s + 4.5)

H(s) = + .02

0(jw) obtained by factoring the reciprocal of the real part of H(jw) is

7.07(s + .5)(s + 4.5)

82 + 14.98 + 13.1

N - . - -
For a unit impulse input oi(t) = ,25e t. .25e ot and oi(t) = -, 25e t s 1.25e

Then p(t) = e'St(Zoi(t) + &i(t)) = .25e-'5t + .75e_4'5t. / nz(t)dt
o

evaluated using Parseval's theorem and tables is 1.86. Substituting

this value into the bound expression gives #(t) 5_.46Se-t.

5

"
.
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In order to determine the closeness of this bound for a

particular case, let ¢(0) = 500. This choice gives ¢(o) = 2502.

Using the previously established bound results in[c(t)[ 5_.1365e-'5t.

The actual response of the system with a unit impulse input is

3

.1475e t sin 6.78t which has a maximum magnitude of .081 at t = ,17

seconds.

C. Some Considerations in Using the Theorems

At first glance it might appear that the best bound would
be obtained by using the largest allowed value of a. However, as
the parameter a is increased, the value of the quantity multiplying
the exponential term in the bound expression will generally increase
since the minimum value of the real part of H(jw) will get smaller.
With bounds available for different a's, it is of course possible
to combine them to get an improved overall bound hy taking the
smallest bound at a given time.

With regard to the allowed values for a, it has already been
stated in the theorem that a must be less than the magnitude of the real
part of the pole of G(jw) closest to the j axis. By considering the
linear case, i1t is also seen that a must lie to the right of that
portion of the root locus of the system corresponding to the gain

in the sector (0, kz).
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Once a has been chosen, it is necessary to check the real
part criterion to determine whether it is satisfied. Presumabhly,
the asymptotic stability of the system will have been demonstrated
so that a candidate for a Y(s) function is available as well as a
value of d/c. It is to be noted that the satisfaction of the real
part condition only depends upon d/c but that the value of the
bound obtained depends upon both these parameters. If the real
part condition is not satisfied for this choice for all w, the
parameters can be altered and a new value of Y(jw) selected. The
required changes in the parameters and Y(jw) should be evident
from the first try.

-]

It must always be made certain that f e2t I y(e)ldt < 1.

A point to note is that the larger tge value of a, the more
difficult it is to satisfy the criterion since ad G(jw - a) has a
larger coefficient and since the area associated with y(t) becomes
less, implying that the maximum phase angle that can be obtained
from 1 + Y(jw) 1is less than 9003 |

Using a computer.it is possible to obtain an optimum value

for the parameters ¢ and d and for Y(jw) by selecting these

quantities to minimize the function of time or number multiplying

the exponential term in the bound expression. With hand calculation

techniques one would have to be satisfied with a few different

trials for these quantities.
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D. Case of x(t) # 0

If in order to show stability a multiplier is required
which has z(t) = F-l(z(jw)) non-zero for t < 0, the bounding
inequality becomes more complicated in that the value of
]¢n(t)| max, the maximum value of|¢n(t)| in the interval (0, Tn)’
must be used. This result‘is presented in the next theorem.
Theorem 2.4. For the system of figure 1 excited by initial conditions

let a and b of theorem 2.1 hold and let

¢ Re H(jw) = Re[c(l + X(jw) + Y(Jw))(G(Jju - a) + l/kz)
+ djwG(Jw - a) + ad G(jw - a)] > b > 0 (2.26)

where b, ¢, and d are positive numbers, x(t) and y(t) are composed of
delayed impulses and a piecewise continuous function that satisfy

x(t) =0 for t >0, y(t) = 0 for t <0, x(t) <0 for t < 0, y(t) <0
for t > 0. The magnitude of the piecewise continuous component of x(t)
is assumed to be less than 2 exp (ft) where £ and f are positive

numbers and

o al
[ e [x(t) + y(t)|dt < 1. (2.27)
Then 9
—2aT [ m°(t)dt )
o(r) e " gz +0(0) +M(T )" ()] ]

where m(t) = Fl [P(jw) Q(jw)] with



p(t) = &% [(c + 2ad)o,"(t) + d &i“(t)] +

a

¢ [0,"(t) & * (x(t) + y(e)"

and Q(jw) is defined by 1/Re H(jw) = Q(jw) Q(-jw).

T
n

M(T ) = c [ e
o - t—J\—Tn

t t=-2
at 7 2 T ey | Ix () |dedndt.

where g(t) = F L (G(jw)).
Proof: The proof is identical with the proof of theorem 2.1 until

(2.6) isreached. In place of (2.6) it is to be shown that

T
n

/ ezat(On(t) - ¢n(t)/k2) o7 (t)dt +
(o]

T

n
[ e xn) * (") - () /K™ e"(e)ae +
(o]
Tn
[ e Iy(e) *((0" () - " () /k,)e™)] 6" (e)de > 0 . (2.28)
o
u
Let x(t) = Z a, s§(t + bi) + x'(t) where x'(t) is the
i=1

piecewise continuous component of x(t). Substituting the impulsive
component of x(t) in the second integral above gives

T
u ab n 2

e ' J e [T+ b - 6"t + b))k, 6" (E)dE

(2.29)
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and substituting the piecewise continuous component x'(t) into

this same integral gives with a change in the order of integration

T

0 n
[ ox o) e [ 2B Ly C g0 - A)/l, 16" (£)de dx.,
-00 o
Tn ‘ (2.30)
Writing out [ e2at [o (t-)) -~ ¢n(t-A)/k2] ¢n(t)dt as in
0
(2.10) gives that this integral is less than or equal to
T
0 2at , n n n
T e e -0y - el - 0/ oo +
T
" 2at, n n n
[ et - 2) - o"(t - N/ky) ¢ (t)de . (2.31)
0

Applying lemma 2 for A < 0 then gives that

T
n

[ e o™ - n) - 6™ - /K] oMo <
[o]

T
n

[ P2 16™e) - o (1) /ky] $Rdae (2.32)
(o]

A lower bound on the second and third integrals of (2.28) is then

(2.32) times

u ab v ad e
[ I aye b+ ] cie b+ [ (0 e 4y (r)eh e
i=] j-l -0

which shows that (2.28) holds.
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Next, let the term

T
n

e [ & (x(r) * ("(e) - " (0)/k,e™)) s (D)t
o}

be added to (2.13) and let the substitution be made as before.
A modification is required in the replacement of o¢n(t) by
c¢n*(t) for the added integral on the right hand side of (2.13).
For this integral it is necessary to take into account the
difference between these two functions due to x(t)'s being
non-zero for t < 0. Letc¢n*(t) = o¢n(t) + o¢d(t). Substituting
for c&n(t) according to this expression then gives the following
two integrals to be added to (2.14)

40
e [ e®x(e) % [0, (e) - 6"(e)/k,)e™ D) ¢ (e)at

-—00

e at d at n
-c [ e"T(x(t) * (0, (t)e™7)) ¢ (t)dt . (2.

An added term involving the initial conditiom expressién is

o0
¢ [ & Ix() * o ")) ¢ (0)ar . 2.

-0

33)

34)

As in the proof of the corresponding stability theorem, the magnitude

of the integral involving o¢d(t) can be bounded in terms of |¢n(t)|
Using the definition of |¢n(t)|max and taking absolute magnitudes

gives

.
max
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+e at d
e [ ) * (0,50 %)) ¢"(t)de <
2 Tn t t=X
e [¢7(t)] max of 3t [ (M) g lg(e) | |x(X) |dedrdt
— t=A®T
n
n 2
= M(T ) lo" () | - (2.35)

Repeating the steps in (2.15) through (2.19) then gives for (2.20)

2aT Tn 2 T

n
de " ¢(TQ-+ 2ad [ e 3t 5(t)e(t)dt - 2ad [ e
o o

2at d(t)dt

T
n

Fo [ e (8D + x(6) + y(0) * (M) - 67 /K D) $T(D)ae
(s}

[- -}

S S RCTEE ORI IROIE (2.36)
Then (2.21) becomes
® 2
e ] B M(T ) )
n 0 n n,:
| o(T ) < e [ 7 + 0(0) + —3 e (t) | maxl® (2:37)

Q.E.D.

Theorem 2.4 can be applied in the case where ¢(o) is an
odd monotone function with x(t) and y(t) being less restricted.
The proof is similar to that of theorem 2.l so it will not be repeated
here.
Theorem 2.5. Let all of the conditions of theorem 2.4 hold and in
addition let ¢(c) be an odd function. Then the assertion of theorem 2.4
holds with x(t) and y(t) permitted to take on positive as well as

negative valuas
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Although M(Tn) is independent of system excitation as
developed in the proof of the theorem, this is not the case for
|¢n(t)|max. A value must be obtained for this quantity before
the bound can be applied. fThe simplest way to find this
quantity is by using theorems 2.4 or 2.5 with a = 0. Tn is
chosen as that value of time at which |¢n(t)|max occurs. Then
by using the fact that ¢(Tn) approaches infinity more rapidly
than |¢(c)|2, a bound can be obtained on |¢| by finding the
value of this variable above which the bounding inequality does

not hold.

E. A Different Bound

The bound (2.2) given by theorem 2.1 as well as the
other bounds obtained thus far depend upon the square of the
initial condition excitation. As long as ¢(o) is in its linear
range, a reasonable bound is obtained for o. To see this, let
d(o) = c102 where ¢y is a positive number. In the calculation
of the bound for g a square root must be taken and o is then
effectively bounded by a linear function of the initial conditions.
On the other hand if ¢(g) is in a saturation region,®(c) = c2!o| +cqs
resulting in the bound depending upon the square of the initial

conditions. To try to get a better estimate in this saturation

case, the approach employed by Lefschetz [11] will be used rather than

the "completing the square" approach given in Aizerman and Gantmacher [13]

that has been utilized thus far. The Lefschetz approach yields a
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bound dependent upon the magnitude of the initial conditionms.
Theorem 2.6 Let all of the conditions of either theorems 2.1 or

2.2 hold. Then another bound on ¢(Tn) is

-2aT I¢n(t)|

N ALICIFE
®(T) <e " 2

3 + ¢(0)] (2.38)

where

p(t) = e28%[(c + 2ad) o, ") +a (O] + e eat[cin(t)eat * (y(t))]®

(2.39)
Proof. The proof is unchanged until (2.15) is reached. At this

point, since (2.16) is negative, it can be dropped and the second
integral (2.17) retained. Then, the left hand side of (2.20) is less
than or equal to the magnitude of (2.17) written in time domain form
which is

e

e [ e®FEm +y(t) * [0,"(©)e* DT §P(e)de +

-=C0

o dat - +oo
d [ ™ 5. M(e) ¢"()at + 2da [

-0 -00

22t oin(t) ¢t (t)de.  (2.40)

The magnitude of this integral is less than or equal to

4o

|6"(t) ] |pCt)|dt . (2.41)

max {oo

where p(t) is defined above. With the exception of the use of the

new bound, the remainder of the proof is unchanged. Q.E.D.
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In a similar way theorems 2.4 and 2.5 can be restated using
this new bound. The modification in the proof is identical to that
given for theorem 2.6.

Theorem 2.7. Let all of the conditions of either theorems 2.4 or
2.5 hold. Then another bound on ¢(Tn) is

o0

-2aT_ |¢™(t)|___ [ |p(t)]dt  ™M(T)
o(T) <e "I e +—2 [0 [P+ e(0))
(2.42)
where
p(e) = e®2% [(c + 2a0) 0, "(t) + d 5" +
c e® o, M (1)e® * (x(t) + y(e)]I™ (2.43)

and M(Tn) is defined in the statement of theorem 2.4.

Example 2. Consider the same problem as that of example 1 and let
the nonlinear characteristic be a saturation function defined by
$(0) = 500 for 0 < |o| < .02k and ¢(o) = Ik for 02K < o] <
with the + sign applying for positive values of ¢ and the - sign

for negative values. Using (2.39) and the previously computed values

of o,(t) and o (t) gives p(t) = .25 + .75e_4t. The bound is then
1 1o -5T -T
n n n n
o(T ) <K (.25T e .1875e + .1875e ) with |¢ (c)|max K.
The bounds for o are then
-T_ -5T_ -T
lo| < .25 7 e - .1875e + .1875¢ " + .01K,|o| > .02K
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2 _Tn _STn -Tn
0 < .04K(.25T e = - .1875e + .1875e ) |o| < .02k .

Plots of this bound (called the L bound) and of the bound computed in
example 1 (called the AG bound) are plotted in figures 7-10 for
various values of the saturation level K. The smaller the value
of K, the better the results of the L bound as compared with the

AG bound.

F. A Response Bound With an External Input Applied

The introduction of the eat multiplier for ¢(Tn) allows a
bound to be obtained for the response of the system with certain
external inputs applied. Theoretically, it is only necessary
to make certain that the input is such that piecewise continuity
and Fourier transformability are guaranteed for certain pertinent
functions. From the practital standpoint some difficulty may be
encountered in finding a bound for |¢n(t)|max in theorems 2.4, 2.5,
2.6, and 2.7. If !” |p(t)|dt is bounded for a = 0, a bound can be

-
computed as discussed previously; if this integral is not bounded,
it is necessary to calculate a time varying bound for ]¢n(t)|2max
using the theorems with a = 0 and choosing |¢n(t)|2max as occurring
at t = Tn.as the worst case. Since ]¢n(t)|max does not appear in
theorems 2.1 and 2.2, these theorems can be applied with no change
in the computation procedure. Examples of possible inputs include

a sinusoidal function, a ramp function and an exponential function.

This discussion is summarized in the following theorem.
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SATURATION LEVEL = O
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Figure 7. Bound on 0 for the saturation level k = 0.
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SATURATION  LEVEL = |

41
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Figure 8. Bounds on o for the saturation level k = 1.
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SATURATION  LEVEL = 2

AG BOUND
[ B
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Figure 9. Bounds on o for the saturation level k = 2,
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207  SATURATION LEVEL = o

191 a AG BOUND
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Figure 10. Bounds on o for the saturation level k = = (linear case).
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Theorem 2.8. Let the conditions of either theorem 2.1, 2.2, 2.4,
2.5, 2.6, or 2.7 hold. 1If the input to the system is such that
on(t), 6n(t), ¢n(t), crn(t), and érn(t) are Fourier transformable,
the assertions of these théorems hold with oin(t) and éin(t) replaced
by oin(t) + orn(t) and &i“(t) + érn(t) respectively. orn(t) and
érn(t) are equal to those components of o(t) and &(t), respectively,
due to the direct action of the input (the input acting through G(s))
in (O, Tn) and zero outside this interval.

Example 3. Let G(s) = 1/(s + 1), k2 = 10, the nonlinearity be monotone,
and the excitation be an input of sin t with the initial conditions
zero., This G(s) is sufficiently simple that theorem 1 can be

applied with y(t) = 0.

Re (¢ + ad + djw)
jw-a+1

Re H(juw) = + .1.

Set a= .25, ¢ =1, and d = 2. This then gives ReH(juw) = 2.1.

-t

o (t) = .5¢"" + .707 cos(t - 135%), ér(t) = -.5¢ % - .707 sin(t - 135%),

and p(t) = 2e'25t sin t. Using these quantities then gives as the

bound

-.5T
@(Tn) < .238 - .014 cos 2Tn - .0561 sin 2Tn - .2235e " < .2959,

For the special case ¢(0) = 100, using the above bound gives o(Tn) < .243.

in

The actual response 1s o(t) = .0082e + .0905 cos(t - 95.20).



71

Example 4. Let the system be the same as in example 3 but let
the input be a unit ramp rather than a sinusoidal input. or(t) = t-l+e

Ld zst

ér(t) =1 - e-t, p(t) = 2e t. Using these values gives

2 -oSTn
O(T ) < 1.91(.25 T " =T + 2) - 3.82e

n’ — n n
from which it is seen that the bound approached for large Tn is
4775 Tnz. With ¢(o) = 100, this gives as a bound for large Tn
|o|.i .309 Tn' The actual response for large values of Tn is
o= .0909 T. ’

n

For both of these examples by referring to [6] -~ [9] and
treating the inputs as being zero outside (O, Tn), it can be
shown that the conditions of the theorem are satisfied.

As was pointed‘out in the introduction, the application of
this theorem can show Liapunov stability with certain inputs

applied. The case of example 3 with the sinusoidal input applied

illustrates this point.

G. Modification For the Case of Poles to The

Left of the Line s = -a

In the case of a system in which a lag compensator has been
incorporated in order to increase the gain of the system at low
frequencies, the significant portions of the response are usually
characterized by one time constant while another time constant due
to the lag compensator characterizes the response for large values

of time. 1In the theorems discussed thus far, it has been assumed

t
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that a is less than the magnitude of the real part of the pole
closest to the origin. Therefore, these theorems would only

be able to yield a bound that would be realistic for large t.

The theorem below allows the calculation of a bound that should
give geod results for the significant portions of the response

of these systems. The approach used is basically one in which the
given G(s) is replaced by another transfer function equal to g(t)
in (O, Tn) but different from g(t) outside this interval. This
modification allows the original theorems to be applied to give

a bound valid in the time interval (O, Tn).

Theorem 2.9. Let

n ay
G(s) = Gl(s) + 121 s bi
n g
s G(s) = G2(s) + 121 ;—:jji;-

where a > bi but less than the magnitudes of the real parts of the
poles of Gl(s) and GZ(S)' Then if conditions a and b are satisfied

and the modified c¢ given below is also satisfied

Re H(jw) = Re[c(l + Y(Jw) + X(Juw)) (GA(jw - a) + 1/k2)
+ d GB(jw - a) + 2ad GA(jw -a)]>8§>0

where X(jw) may be zero, and
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(a-bi)Tn ‘Jan

n ai[l - e e ]
- = - +
GA(jw a) Gl(jw a) iZl Ju - a+ b,
(a=b,)T —JwT
E ci[l - e 1" e n]
6,(ju - a) = G,(Juw - a) +
B 2 =1 jw - a+ bi

the assertions of theorems 2.1, 2.2, and 2.6 hold without any
changes and the assertions of theorems 2.4, 2.5, and 2.7 hold
with the g(e) used in the definition of M(Tn) replaced by

g,(a) = F 1[G, (Jw)].

Proof. The only change required in the proof of the theorems is in

the step just before the application of Parseval's theorem by which
the time domain integrals are converted to frequency domain integrals.

c¢n*(t) and &d)“*(t) are redefined as a¢n*(t) =-F_1[GA(jw) F(6™(t))]
and 5¢n*(t) =—F—1[GB(jw) F(¢n(t))]. If x(t) = 0, these changes

do not alter the values of the integrals in which they appear since

-these two time functions are equal to o(t) and o(t), respectively,

in (O, Tn). For x(t) # 0, the substitutions result in a different
value for o¢d(t) but the same steps in the proof are applicable with
g(e) being replaced by gA(e) in the definition of M(Tn). The reason

*
for the changes is that with the original definitions, o n (t) and

¢
e n* at

o¢ (t) when multiplied by e ~ were not Fourier transformable. The
new definitions result in Fourier transformable functions when
multiplied by the exponential. The other steps in the proof are

unchanged.
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Example 5. Let G(s) = -1.005/(s + 2) + 1/(s + 1) + .005/(s + .1)

for a system with a monotone nonlinearity and a gain kz = 10. Then

s G(s) = 2.010/(s + 2) - 1/(s + 1) = .0005/(s + .1). Let a = .5= Tn.
This GA(s) is sufficiently simple that theorem 2.1 can be applied

with Y(s) = 0, ¢ = 1, and d = 1. The real part criterion is then

Re [2 GA(jw - a) + GB(jw -a)+ .1] =

+4T  ~juT
1/(Gw + .5) + .0095(L -e "e  ™/(uw- .4) + .1.

The maximum magnitude of the second term on the right hand side
is .053. Therefore, Re H(jw) > .047. For convenience in the
calculation of the lower bound, this number will be used rather

5t

than the actual function of frequency. p(t) = e’ [20in(t) + éin(t)] =

=<5t +.4¢t
e + .0095e for an impulse input., The bound is then

-T_ -.2T 2T -1.1T
®(T ) <5.32[1.19¢ "+ .000113 e -—e "-.19e B!

for T < .5 For T > +5, the bound given by the original theorems

can be used with a < .1.

H. _A Result for the Linear Case

If ¢(o) is a linear function or a nonlinear function in its
linear range, it 1s possible to get an improved result for the
frequency domain condition c. To see this, let ¢(0) = Ko where

0 <K <o, Then (2.4) can be replaced by
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T T
n n
a [ €2 o) o(t)at -2a [ e?®F o(t)dt > 0
[} o

since o(t)¢(t) = Koz(t) and %(t) = Koz(t)/z. Also, for the

linear case

(t = N)dt] <

T
n
[ e e EN (P (ean) - ¢R (e k)0 (D) ae =
[o]
Tn
K(L - K/ky) [ et a(1) e (E A" (eoryae <
o
Tn Tn
KL - K/ i 23t 2 a4 f Q2a(t = 3) n2
o o
Tn Tn
KL - K/ky) [ 225 (nae = [ €250 - eh0)/ky) (o
(o] (o]

which means that the integral magnitude condition can be relaxed.

Combining these two results gives for the frequency domain

condition ¢

Re H(jw) =
Re[(} + djw + Y(jw) + X(3uw)) (G(Jw - a) + 1/k2)] >6 >0

40
where | (Ix(e)] + |y(e)de < 1.

Because of this improved conditdon, it is possible to choose

larger values of the parameter a for the linear case than for the

nonlinear case. This suggests the following approach. When |o(t)]

is such that the system is 18 ittis nonlinear region, one of the

bounds already discussed can be claculated. When according to
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this bound the system is in and remains in the linear region for
all succeeding values of t, say t 3_Tl, an improved bound is
calculated using the real part criterion given above. In
applying the theorem this second time, a value is immediately
available for ¢(Tl). However, since ci(t) and &i(t) are not
known for this second application of the theorem, bounds for
these two quantities must be calculated using the bound on

¢(0) determined in the first application of the theorem.
I. Conclusion

This chapter has presented a number of different results for
bounds on the response of the single nonlinearity time invariant
system. The usefulness of these bounds appears to be in two
applications. First, it is possible to develop an approach for
carrying out an analytical design for a nonlinear system. If the
system is excited by initial conditions or by an impulse or step
input which can be converted to equivalent initial condition

inputs, the theorems given can be used to calculate a bound on

|o(t)|. Since the desired equilibrium state for the excitation

under discussion is the origin, it is possible to obtain a satisfactory
design for the response time of the system by adjusting the parameters
of the system or by adding a compensator such that the bound on

the system output meets the system specifications. Secondly, 1if a

bounded time varying input is applied to the system, it is possible

to show Liapunov stability by applying the bounding theorems.
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Therefore, the bounding theorems give sufficient conditions for
Liapunov stability with a bounded input applied, provided that
no common factors of G(s) in the right half s plane or on the

jw axis have been cancelled.
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J. Appendix

Lemma 1. Let fa(t) and fb(t) be two continuous functions of t

that are zero outside the interval (0, nAt) where n is a positive
integer and At is a positive number, fa(t) fb(t) >0, fa(t) = h(fb(t))
where h is a piecewise continuous monotone increasing function of

its argument, then if either both fa(t) and fb(t) are always non-

positive, or non-negative or if h is an odd function with h(0) =.0,

n n
) |£_Ckat) £, (kat - 2| < ] £ (kAt) £ (kAt)

k=0 k=0
where A is a real number such that |A|/At is an integer.
Proof. The proof of this lemma follows from the proof of the
lemma given at the end of chapter 1 in which this result is

obtained as an intermediate step.
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Lemma 2. Let fa(t) and fb(t) be two continuous functions of time
that are zero outside the interval (O, Tn) where Tn is a positive
number, fa(t) fb(t) >0, fa(t) = h(fb(t)) where h is a piecewise
continuous monotone increasing function of its argument, then if
either both fa(t) and fb(t) are always non-positive or non-negative
or if h i1s an odd function with h(0) = 0,

T T

n n
l }o e2a(t—>\) fa(t)fb(t_x)dd < I ezat fa(t)fb(t)dt, A >0

o o
and .
T T

T 2at T 2at
| [ e £ (0)f, (e=N)dt]| < [ e £ (0)f (0)dt, A < 0.

o (o}

Proof. Let At be chosen such that IAI/AC is a positive integer and n
is the largest integer less than or equal to Tn/At. It is assumed that
[A] < Tn for 1f |A] 2T the assertion of the lemma follows at once.

With X >0, let the two summations

n
kgo Ifa(kAt) £, (kot - M| e

2a(kat - X)) At (A1)

and

n
kzo £, (kt) f, (kit)e

2a(kAat) At (A2)

be formed. (Al) divided by At may be rewritten as
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(£, £,(0)] + [£,Oat) £ (at) [+ [£ O+ 288) £, a8} ] + ...

+ |fa(Tn—At) £, (T - A-At) |+ |fa(Tn) fb(Tn—A)|]

2aiAt
e

+ ( - 1) [Ifa(A+At) fb(At)l + |fa(x+ 2At) fb(2At)| + ...

Ifa((n—l)At) £, ((n-1)at - |+ Ifa(nAt) fb(nAt-A)I]

baAt 2aAt
e - e

+ ( )[|fa(x+ 28t) fb(ZAt)I + lfa(x+3At) fb(3At)| + ...

Ifa((n—l)At) £, ((n=1)At-2)| + | £, (nat) fb(nAt-A)I]

+ ...

+ (2200 _ 220288y e ((m-1)at) £, ((a-Dae-0) | +
£, (mat) £, (mot-1)]]

+ (e23h | (2a(d-at),y |£,_(nat) £, (nac-2) . (A3)

Similarly, (A2) divided by At may be rewritten as

[fa(O) fb(O) + fa(At) fb(At) + fa(ZAt) fb(2At) + ...

+ fa((n-l)At) fb((n-l)At) + fa(nAt) fb(nAt)]

+ (eZaAt _ 1)[fa(At) fb(At) + fa(ZAt) £ (28t) + ... + f_(nat) £, (nat)])
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LaAt 2aAt
e - e

+ ( ) [fa(ZAt) fb(ZAt) + fa(3At) fb(3At) + ... fa(nAt) fb(nAt)]

+ DR

R eza(*'At))[fa(x)fb(x) + £ OHAE)E, OHAE) + ... £_(nAt) £, (nt)]

+ (e2anAt _ e2a(n-1)At

) [fa(nAt) fb(nAt)] . (A4)
Comparing the terms in (A3) and (A4) having the same exponential multiplier
and using lemma 1 on the terms of (A3), it follows that (A3) is less than
or equal to (A4). Since
Tn n
| [ £.(t) £ (t-)) Q28N g o Y f (kAt) £ _(kAt-A)atl
o a b k=0 a b

< g(Aat)

where e€(At) is a positive number whose value depends uoon At, taking the
limit as At + 0 gives
T T
t

n n
| f £ (t) £ (£-2) eza(t'x)dtl < f £ (t) £, () 28t g,
o] (o]

which is one half of the lemma.

With A < 0 the summation

n
kzo |£, (ko) £, (kat-A)

|e23KAt (A5)
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is formed and rewritten as

[|fa(0) fb(-x)| + Ifa(At) fb(At~A)| + |fa(2At) fb(ZAt—A)I + ..

£, (nat+r) £ (not)]]

2alAt
e

+ ( - DIE (o) £ =) | + [£_(288) £ (28e-0)] + ...

£, (nae+r) £, (nat)]]

LaAt 2aAt
e - e

+ ( ) [Ifa(2At) fb(ZAt-A)| + Ifa(BAt) fb(BAt—A)I + ...

|£,(nat+r) £, (nat)]]

+ LI

e2a(nAt+)\) _ eZa((n—

ey 1)At+A) [|£, (nae+A) £, (o) 1] . (46)

Repeating the foregoing reasoning with (A6) replacing (A3) gives

T T
n

2at _ " 2at
[ oj' e™ " £ (r) £ (¢ A)de| iof e™®" £ (1) £ (t)dt .

Q.E.D.
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V CHAPTER IITI. SYSTEM WITH A TIME VARYING

NONLINEARITY, SAMPLED DATA SYSTEMS
AND SYSTEMS WITH MULTIPLE NONLINEARITIES

A. Time Varying Nonlinearity

The theorem given below is a modification of theorem 1.2 with
the modification added to take into account the an ﬁ(t)¢(t)dt term
no longer being an exact integral. There are a gumber of ways in
which this could be done; the approach used has the merit that it is
not necessary to take into account the rate at which the nonlinearity
changes with time. Therefore, this theorem appears to be the most
generally applicable one that could be developed.

Pertinent references include the works by Sandberg [12] and
Rekasius and Rowland [19]. The criteria which are developed in these

references do not include anything as general as the Z(s) multiplier

used in theorem 3.1.

Theorem 3.1. For the system of figure 1 with ¢ being a time varying

nonlinearity let the following conditions hold:

a. A ¢m(o)c < ¢(o,t)o0 < B ¢m(c)o where A and B are real numbers
satisfying 0 < A<l and 1l <B < =, ¢(0,t) = ¢m(0) =0, ¢ ¢(o,t) < k 02
where k > 0 and o ¢m(o) > 0 for 0 # 0, d¢(o,t)/do is a continuous
function of o, ¢m(o) is a continuous monotone increasing function

of ¢ having an odd part ¢mo(o) that satisfies |¢m(o)[ j_c|¢m°(o)|

and [¢ (0)| < D|¢ (o)
b. Conditions b and ¢ of theorem 1.1.
Then a sufficient condition for asymptotic stability in the large

is that

Re(Z(ju) G(jw) + E(GUIW) + 1/K) - a5 7 + o®) JeGw)[?1 26 > 0 (3.1)
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for all real w where E is a non-negative number,§ is a
positive number, and
2(jw) = 1+ aju + X(Jw) + ¥ (ju) (3.2)

and

4
== 0/ ') + y e + § a1+ +] ¢

-00

+
11"

40
[ [ (x""(t) +y' (£))dt + ] ai’ + 7 ci_] <1 (3.3)

-0

> |os

+ + +
where x' (t), y'+(t), a; and ¢, are the positive portions or

i

values of the corresponding non-superscripted functions or numbers

1 are the negative portions or

and x' (t), y' (t), ai-, and ¢
values of the corresponding non-superscripted functions or

numbers. The magnitude of the piecewise continuous component

of x(t) is assumed to be less than 2 exp(ft) where £ and f

are positive numbers.

Proof. The proof is ident%cal with the proof of theorem 1.2 except
for the handling of the f : &(t) 6(t)dt term. Because of

o
condition a of the theorem, it is possible to express ¢(o,t) as

6(0,t) = Ab_(0) + 8,(0,t) (3.4)

where

6,00, ] < B-8) [ (] < BB Joo,00] (3.5)
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Using this result, it is desired to show that
Tﬂ Tn
. — . 2
[ 5()e,(0,0)at + 222 62(e) + K2 o°(£)dt > 0, (3.6)
o) - e]
Since
. B- .
5(t) 8,(0,0)] < 5 [o(8) k a(e)]
238 1220y 40P 2] (3.7)

<
- A

(3.6) holds. (1.43) in the proof of theorem 1.2 is replaced by

T T

n n
[ (8(e) + x(t) + y(1)) *a"(6)) ¢"(t)dt +an [ o"(r) ¢ "(D)dt
(o) ’ (o}

Tn Tn
fa [ 5 (Deyo,0de + 5o SBR[ e 0)1? + 0 o) 1D
o (o]
T

n
+E [ ("0 - " () /) ¢"(t)dt =
[o]

T T

n n
I«Mn+xu>+ﬂw>*%Wn>waMt+aI %Wu¢%na
(o] o

T T
(B-A) no, _ n
+ .50 AL f [0¢n(t)]2dt +osalBA 42 [%“(t)]zdt
o o
Tn
+E [ (°¢n(t) - $T(E)/k) ¢"(t)de +
T ° T
° n n Do n
[ + 3@ + y(0) %o M®) o+ 8 [ 50 o
[o]

o
T T T

_ n, . _ n n,
+ & 'IZ AL g 5,7 (8) 0y (t)ar + ﬂ%—& K[ °1n(t)°¢n(t)dt +E[ oM (t)ae
(o] o °

T T
n . _ 2 n
+ .5aAgB—A2 [t oin(t)]zdt + :iﬂi__é)_k [ ot ®mitae. (3.8
o

o
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Before applying Parseval's theorem to the integrals on the right

hand side of equation (3.8), the G¢n(t) and o n(t) terms must

¢

* . %*
be replaced bv o n (t) and o n (t), respectively and the upper

$ ¢
1imits on the integrals changed to ». The only new step

T T
required is by the f n k1¢n(t)]2dt and f n[o¢n(t)]2dt terms.,
0 o

*
d . o " (t) - o n(t) where

od —on* _’n
Let c¢ (t) = o¢ (t) o¢ (t) and o¢ 6 o

3 . *
o d(t:) is that component of ¢ n (t) outside (O,Tn) and c¢d(t) is

¢ ¢
that component of 0¢n1t) outside (O,Tn). Then

f [é¢“(t)]2 dt = [&¢n*(t)]2dt - [&¢d(t)]2dt (3.9)
(o] [o] (o]
and
f [o¢n(t)]2dt - [c¢n*(t)]2dt - [o¢d(t)]2dt . (3.10)
o] 0 (o]

Using the convolution theorem together with straightforward

bounding techniques gives

- ]

t -1 2
[ ] IF'GecGuw) dr)%ae
T =T

oo

AR CAIGIRT < 1" |?

o}

max

(3.11)
and ‘

© ] t

f  togntar < ") L U] [Fleaw | aarfae. 3.12)
T t-T

n

max

With (3.9) and (3.10) used on the modified right hand side of

(3.8), the Aizerman and Gantmacher completing the square approach
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together with condition (3.1) gives a bound on all of the integrals

on the modified right hand side except for

g x(t) # o¢d(t)]¢n(t)dt + i‘i‘i—‘t@l f {é¢d(t)]2dt +
(o]

T

_ ® 2 - o,
=3 (B=4) 82 [o¢d(c2dt+ ——(——1'5“2“ / [oin(t)]zdt+
0 o
Tn
22elB8) 1 s ey )Par (3.13)
o
Using the result obtained for the first integral of (3.13) in
Chapter I together with (3.11) and (3.12) gives that the left
hand side of (3.8) is less than or equal to
M, + [e)|2 M (3.14)
1 max 2 ‘

where M1 and M2 are positive numbers independent of Tn' Using

(3.6) and (3.7) gives

T
n

[ ((8(t) + x(t) + y(£)) * o™ (L)) ¢"(t)dt + aA ® (t)
o}

<ah e (0) + 2 + |¢() |2max M, (3.15)

o(t)

where ¢m(t) = f ¢m(o)do. The above inequality shows that o(t) is
o] T

n
bounded and that f o(t)¢(t)dt is also bounded, thereby demonstrating
[o]

asymptotic stability in the large. Q.E.D.
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Example 3.1. Let G(s) = {s +.0001)(s + '25). The problem is

(s + .1)(s + 1)

to find the characteristics of the time varying nonlinearity

that is permitted if the system is to be asymptotically stable
in the large. G(jw) has a leading phase angle outside the i-90o
band at low frequencies and a lagging angle outside this band
at high frequencies. A convenient choice for Z(s) is (-s+.05)(s+1)/ (-s+.1).
Z2(s) G(s) is then (—52 + .0025) (s + .0001)/(-sz + .0)(s + 1)2, the
real part of which is non-negative for all w. Also, since

Z(s) = s + 1.05 - .055/(-s + .1), both x(t) and y(t) are

4o
non~positive and f (|x(t)| + |y(t)|)dt = .524. Therefore, from

(3.3) it follows t;at B/A < 1.91. Next k is determined by

working with (3.1) with E = 0. The largest allowed value is

k = 2.16 . Therefore, any continuous time varying nonlinearity
with a monotone bounding function ¢m(o) such that the B/A inequality
is satisfied and having a linear bound with a slope less than

2.1Q0 is permitted. An example of an allowed function is

¢(o,t) = po(l + q cos mot)/(l + lc|), where 0 < p < 1.6 and

0 < q < .312, For this case ¢m(o) = po/(1 + |a]).

The next theorem gives a bound on the response for ¢

being a time varying nonlinearity.
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Theorem 3.2. For the system of figure 1 excited by initial

conditions let a and b of theorem 3.1 hold and let

c. Re H(jw) = Rel[c(l + djw + X(jw) + Y(Jw)) G(juw - a)

+ E(G(jw - a) + 1/k) + da G(Jw - a) *+

d B%ﬁl (kz + a2 + mz) |G(jw - a)lz] >8>0 (3.16)

for all real w where a is a positive number whose magnitude is less
than the magnitude of the real part of the pole of G(s) closest to
the jw axis and ¢, d and E are positive numbers. x(t) and y(t) are
composed of delayed impulses and a piecewise continuous function
that satisfies x(t)=0 for t > 0, y(t) = 0 for t < 0 and x(t) < 0 for
t <0 and y(t) < 0 for t > 0. The magnitude of the piecewise
continuous component of x(t) is assumed to be less than 2

exp(ft) where & and f are positive numbers and

* -altl
[ e x(e) + y(t) |dt < 1. (3.17)

-—00

f n?(t)dt
[0}

-2aT M(T ) [™(t) |2
Then, ¢m(Tn) <e n [ idA + ¢m(0) + n TN max
R(Tn)]
dA (3.18)
c('rn)
where ¢ (T) = [ ¢ (o)do and m(t) = FL{P(ju) Q(w)] with

(o}

p(t) = € [(c + 2ad + E) o,"(1) + d 6, ()] + ¢ [o," ()™ * (x(t) +

", d(B-A
yenT+ SQEL &t 425 Mo,
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90
Q(jw) is defined by 1/Re H(jw) = Q(jw) Q(-jw),
T
n t t-Xi
M(T) =c [ et f e2(EA) / |g(e)||x(A)|de dr dt
n
o - t-A-T
n
t
$2240R) 22t e cGen | ar)lae +
T t-T

© t
S4B-R) (28t 5l jan2ae, and
t-T

n n

T
n

R(r) = <24EB) 12 (1 )12 4 (5 (01D,
(o]

Proof. The proof of this theorem is similar to that of theorems

1,2, 2.4, and 3.1. A modification required for this case occurs

T

n
for the f eZat o(t) ¢(o,t)dt term. It may be rewritten as

[o)

T T
n

f 2at - n
e“@t 5(t) o(o,t)dt = A [ e
o o

238 5(t) ¢ (a(t))at +

T
n

[ e®2 5 ¢, (0, t)dt. (3.19)
(o]

Integration by parts gives for the first integral on the right
hand side of (3.19)
2aT T

n
Ae " 0 (o) - A0 (0(0)) - 2aA o] e

2at o (t)dt. (3.20)
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The second integral on the right hand side of (3.1%) is less

than

T

n
[ 1e2) + K2 el 1)1e??t 4 (3.21)
[o]

.:5 B-A
A

Using these modifications together with the approaches already
employed gives the proof of the theorem. Q.E.D.

The conditions of the theorems for the time varying
case are a good deal more complicated than their time invariant
counterparts; there appears to be no way of simplifying these
results and still obtaining improved conditions for asymptotic

stability.
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B. Application to Sampled Data Systems

In this section the techniques of the foregoing work are
used to derive an improved stability criterion for sampled data
systems. To the authors' knowledge, the best results obtained
thus far for the single nonlinearity system are due to

Jury and Lee[zol. Their criterion includes that of Tsypkin

[21)
as a special case. For asymptotic stability in the large it
is required that the following relationship be satisfied on

the unit circle:

Re G*(z) L+ q(z -1)] + 1/K-K' l%l.l(z - 1)G*(Z)|2 > 0,
where 0 < ¢(o)fo < K and IQ%égll < K', In the above inequality
(z - 1) is analogous to the jw term in the Popov criterion.
Theorem 3.3 given below permits an entire class of multipliers

to be used.

a. A Theorem for Monotone Nonlinearities

Theorem 3.3. For the system shown in Figure 11 let the following
hold:
a. 0 < d¢(o)/do §_k2 where k2 is a positive number, both ¢ (o)
and 0 - ¢(o)/k2 = 0 only for 0 = ¢(0) = 0, and d¢(o)/do &s
a continuous function of o.

*
b. G (z) is a rational function of z having all of its poles

inside the unit circle and the corresponding time function

g(i) is zero for i negative. The numerator and the denominator

*
of G (z) are assumed to have no common factors outside or

on the unit circle in the z plane.
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2
c. Lim (0= ¢(0)/k,) ¢/[6(0)[" = =,
lo’l > o
Then a sufficient condition for asymptotic stability in the

large is that
* *
Re [R (2z) (G (z) + 1/k2)] 20 (3.22)

for z = erT for 0 < w < 2m where

* * Lok
R(z) =1+X(z)+Y (2) . (3.23)

The time function x(i) = 0 for i > 0 and < 0 for i < 0 while
y(i) = 0 for i < 0 and < 0 for 1 > 0. These functions must

also satisfy

40
I (x| + [y <1. (3.24)

=m0

The magnitude of x(i) is less than 2 exp (fi) where 2 and f

are positive numbers.

Corollary 1. In addition to the conditions of theorem 3.3, if
¢(0) is an odd monotone nonlinearity, that is, if ¢ (o) ==¢(~-a),
the assertion of the theorem holds with x(i) and y(i) permitted
to take on positive as well as negative walues.

Corollayy 2. If G*(z) has poles on the unit circle, G*(z) is
required to be stable in the limit; that is for an arbitrarily
small positive number €, the roots of 1 + eG*(z) must all lie
inside the unit circle. Also, the slope condition becomes

> § > 0 where ¢ is an arbitrarily small positive number. The

other conditions are unchanged except for (3.22) being 1_61 > 0.



95
Proof. First it will be shown that
T n n
Io@) @) - ¢ @k, +
i=o
t: n L n n
I o7 I [x) +y®mI6"E - h) - 6" = h)/k,] =
i=0 h=-e
T n n n
cm) I ¢ () (a(1) - o7 (@) /k,) (3.25)

i=o0

where c(n) is a positive number. The second summation on the
left hand side can be rewritten as
T n ° n,, n
I 7@ [ x() [0°@-h) - ¢ G -h)/k]+
i=o h=-w» ”
T on ot n n
I ¢7@ [ y) [070 - h) - ¢"(1 - h)/k,], (3.26)

i=o h=0

Interchanging the order of summation gives

o} n
I ox() [ ") ["d - h) - ¢"(1 - h)/k,] +

=—0 i=o

e 2 n n n

I oyt [ 67 [0 -h) -¢d-h/k,]l. (3.27)
h=o - i=o

n
Rewriting Z ¢n(i) [on(i - h) - ¢n(i - h)/k2] in terms of the
i=o .
positive and negative components of ¢n(i) and qn(i - h) - ¢n(i - h)/k2

and applying lemma 1 given at the end of Chapter 2 results in
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T n
I o%@ (" - h) - 0" (1 - h)/k,] <
i=o0
2 n n
[ 67 ["@) - 6" ()/k, ] (3.28)
i=o

Using (3.2%) from the statement of the theorem together with
(3.28) shows that (3.25) holds.
n n n
Letting o (i) = o¢ G) + oy (1) in the left hand side
of (3.25) gives for this side of the equation

n
I e @) - ")k, +

i=o

n i
n
iZO ¢ hZ_,, [x(h) + y(h)][o;‘(i - h) - ¢"(4 - h)/k2] +
q n n i n
I o7@) [0+ [ [x(h) + y()] o (1 - hY (3.29)
i=o =~ 00

: *
Let o¢n(i) be replaced by °¢n (1) where

o, ") = -2 e (2) zle™ )],

This substitution can be made without changing the values of the
summations in the first two summations of (3.29) émcept for the
term involving x(i). Since x(i) is not zero for i < 0, the value

*
of o¢n (i) for 1 > n will contribute to the result obtained by
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convolution. Therefore, the summation involving x(i) is

handled separately by making the substitution

d

6 (1)

o¢n(i) =o¢n*(i) -0

which gives for the total summation where the limits on i have

been extended to + =,

= n n* n
I 6" (0,7 - ")/ +

==

pa n I n* n

I 6@ ] &M +ymlio, (=-h)-oe(1=h/k]

{i=—c h=-o
e n L d

-7 e I x o, (1 =h) . (3.30)
{i=—oo h=-w
i
With o d(:I.) = z g@-m) ¢n0n), i > n, using the exponential
¢ m=i-n

character of g(i) and x(i) as -in the proof of theorem 1.1 it can

be shown
Rl n i
d
i v e o xO o, A= | <ot @’ (3.31)

where Ml is a positive number independent of n and |¢n(i)|max is the

largest magnitude of ¢n(i) for 0 < i < n. Applying the Liapunov-

Parseval theorem to the first two summations of (3.30) gives

+1
— f 1+ X*(eij

-

) + 5 De @) + 1710 121601117 dur

(3.32)
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where T is the sampling period. Since the imaginary part of the
integrand does not contribute to the final result, (3.32) may
be rewritten as

1 +n

Lo e+ X 4 v* @D e’ @D + 1k, (216" @117 dur
-7

(3.33)

which is non-positive by (3.22). Combining (3.25) with (3.29),

(3.31), and (3.33) gives

n
c@ § CWERA - "Wk <M et @7+
i=o

n i
| ] Wi "+ 1 [x() +yml o d-w1 (.38
i=o h=-e

The second summation on the right hand side of (3.34) is less than

or equal to

[~

i
167 () | o 1-2-0 ERNCOR hz_@ [x(h) + y(@)] o,"( - 1)

= [s" ()] (3.35)

max MZ

where M2 is a positive number independent of n. Using (3.35) in

(3.34) glves

n
) J SWEW - W) <m @)

+ M| 6" ()]
i=o

max max.

(3.36)
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Let n be chosen such that |¢n(1)|max occurs at 1 = n. Using
condition ¢ of the statement of the theorem it follows that
on(i) and ¢n(i) are bounded. Also, since the right hand side
of (3.36) is independent of n, it follows that cn(i) and ¢n(i)
approach zero as i approaches infinity. Because of the assumptions
on G*(z), it also follows that the other state variables of
the system are also bounded and approach zero as i + ». Therefore,
the system is asymptotically stable in the large. O.E.D.

The assertion of corollary 1 follows from the application
of the lemma given at the end of chapter 2 to l E ¢n(i)(on(i-h) -
¢n(i-h)/k2)| to get as a bound on this quantityi=o
% ¢n(i)(on(i) - ¢n(i)/k2). The remainder of the proof is
i:zhanged.

Corollary 2 follows from the transformation

¢ (o) = ¢l(c) +c0 and Gl*(z) = G*(z)/l + eG*(z) which results

in a system that satisfies the conditions of the theorem.

*
An Allowed R (z)

z - bi z - ch
Consider n( - ) w( ) ) with
1273 h 274
0 < a; < bl < a2 < b2 «e < a_ < bn<4
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Expansion of this function in a partial fraction expansion

gives where Ai and Bh are positive numbers

1 - z Ai Z Bh
z—-a z~d
i i h
-1
A, z Bh/dh

z—l hl - zfdh

from which it is seen that both x(i) and y(i) are non-positive.

The total area

oo l1-5% l-c¢

T ox@] + |y =1 - s(—2) 1 —2) <1,
{==w il—ai h ]_—dh

Therefore, this function is an allowed one for the general

monotone nonlinearity.

*
Example 3.2. Let G (z2) = %f?g - ';lfg—3 and 0 < k2 < 1.

z+ .3,,z+ .9

.3
z - .3)(2 - .9)'

* 2 -
Let R (2z) = . + .3

e (z) + 1/k, = (

Expressing this function in the time domain gives

1 2

R*(z) =1-.6z  + 2(.3)22- - 2(,3)3;;"3 + ...

from which it is seen that y(t) takes on both positive and negative
values and that the summation of the magnitude is 6/7. Therefore,

*
this R (z) may be used with symmetrical monotone nonlinearities.
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* *
R (z) (G (z) +1) = (z+ .9)/(z - .9). The angle of this
product on the unit circle is - tan_l(9.48 sin wT). Therefore,
the criterion is satisfied and the system is asymptotically

stable in the large for the given range of k2.
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C. The Multiple Nonlinearity Problem

Application of the by now standard approach gives the

following theorem for a system having a number of nonlinearities.

Theorem 3.4.

For a continuous system with i nonlinearities let the

following conditions hold:

a.

0<d ¢i(oi)/dci <k i where k21 is a positive number,

2
both ¢i(oi) and o, - ¢i(oi)/k21 = 0 only for'oi = ¢i(ci) = 0,

and d¢i(oi)/doi is a continuous function of o

The transfer function - Gi (s) relating F(oi(t)) to

3

(t)) is a rational function of s with the number of zeros

F

(¢j
at least one less than the number of poles and with all of
the poles in the left half s plane.

%

2
Lim of ¢i(oi)dci/|¢i(ci)| =
!Ui' > o
Then a sufficient condition for asymptotic stability in the

large is that the Hermitian matrix H(jw) be positive semi-

definite where

hll(jw) hlz(jw) ceeaen
H(jw) = hzfjw) hzz(jw) cecens
L hnn(jw) |
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where h,, (ju) = Re z, (3w KGii(jw) + 1/k,.)] and

(Jw) + 2,(Jw) G, (Jw)] for 1 < j

1] 3

1
hij(jw) =3 [2,(Ju) G 31

and hij(jm) = hji(jw) for 1 > 3.

Zi(jm) =1+ aijw + Xi(jw) + Yi(jm)

where a is a positive number,xi(t) = () for t > 0 and yi(t) =
for t < 0 with both of these functions being non-positive and
consisting of the sum of a piecewise continuous function which is
Fourier transformable and shifted impulse functions that satisfy
o
[ Uz ] + |y (0 Dde < 1.

-0

Corollary 1. In addition to the conditions of theorem 1, if

¢i(oi) is an odd monotone nonlinearity, the assertion of the

theorem holds with xi(t) and yi(t) being permitted to take on
positive as well as negative values.

Proof. The proof of this theorem parallels that of theorem 1.1

but instead of working with one function there are n functions.

The only variation occurs after applying Parseval's theorem. The
quadratic form that is obtained is associated with a Hermitian matrix
which is required to be positive definite. After applying this

condition, .the inequality given below is obtained.
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T
E (T.) fn (o} ") /k,1 oG (t)dt +
L e, (T, . oi(t) - ¢i(t) 2 ¢i(t) t
n n a 2 n n
1=Z=1 ay ¢ (T) iizl L P O R 121 Myg 1o (] oy

n
+ Z a, &,(0),
=1 i i

The reasoning of theorem 1 leads to the conclusion that all of
these variables are bounded and approach zero as t > o,

Example 3.3. This example was considered by Ibrahim and
Rekasius[zzl. The system consists of two nonlinearities connected
in a single loop with linear elements in between. Gl(s) = 1/(s+5)
and Gz(s) = (s+1)/(s+2)(s+3). TFor this case, Gll(s) = G22(s) = 0,
G12(s) = -1/(s+5) and GZl(S) = (s+1)/(s+2)(s+3). The + sign

for szs) is due to the feedback being negative. It is assumed
that both nonlinearities are continuous monotone functions.

Rez,Rez, | |Z;(jw) z,6w)  (-fu + 1) 2

H@w | = == -3 Gu + 5 (3w + 2)(=jw + 3) 2 0.

If asymptotic stability in the large is to be shown for

0 < k21 < o and 0 < k22

must be found such that the quantity inside the magnitude squared

< o, two functions Zl(jw) and Zz(jw)

brackets is zero. This requires that

ZiG0)  Zy(-Ju)(-ju + 1)

(W¥5)  (Cyub 2)(~fu + 3)
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(=jw + D (juw + 3) 5
Let Z,(3w = ST T R
) 21
- e+ 5)(=jw + Do+ 1) _ _ 4 4 .
2,Qw) = T+ D) (e * 2) Ju+ 5

Jut 2 -jw + 2

A check of the integral magnitude condition for these two
functions reveals that they are allowed functions for general
monotone nonlinearfties. Substitution of these expressions
gives (w2 + 1)/(w2 + 4) on both sides of the equation. There-~
fore, it has been shown that the given system is asymptotically
stable in the large for monotone nonlinearities having
arbitrarily large slopes. In [22], asymptotic stability

was shown for k21 = k22 = 6,

Conclusion
This chapter has applied the method of chapters 1 and 2
to get improved theorems for a time varying nonlinearity, for a
sampled data system, and for a system with a number of nonlinearities.
In order to show how useful these theorems are, it will be necessary

to consider a number of different examples for each case.
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VI. CONCLUSION

From the conclusions given at the end of each chapter it
is apparent that additional research in the area of time-frequency
domain stability criteria should be worth-while. In particular, the
problem of the closeness of the stability results to the actual

absolute stability boundary is an important one for future study.
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III CHAPTER I. THE STABILITY OF SINGLE NONLINEARITY
CONTINUOUS SYSTEMS

A. Introduction

This chapter deals mainly with sufficient conditions for the
asymptotic stability in the large of the system shown in Figure 1 with
$(0) a continuous monotone increasing nonlinearity. Several recent
works have considered this problem [1-4]. Reference [4] by one of the
authors concerns a part of the research presented in this report,
namely corollary 3 of theorem 1.1 and a simplified version of
theorem 1.2. Brockett and Willems [3] presented a sufficient
condition for the asymptotic stability of this system with the
nonlinearity being a continuous monotone function. With 0 < d¢/do g_kz,

it was shown that
Re[Z(jw) (G({w) + l/kz)] >0

is a sufficient condition for asymptotic stability where Z is either a
physically realizable RL driving point impedance function or its recip-
rocal. Z allows the angle of G(jw) + l/k2 to lie outside the T 90° band
in only one direction. In other words, the polar plot of G + l/k2 is
restricted to lie in three quadrants. The present work presents a
theorem for the monotone nonlinearity which permits a larger class

of Z multipliers to be used, thereby allowing G + 1/k2 to lie in four
quadrants. The same approach‘is applied to give improved conditions

for the asymptotic stability of a system with a single odd monotone

nonlinearity and for a system with a nonlinearity having a monotone

bound.
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In using the following theorems, if the nonlinear characteristic

satisfies klI0| < |¢(0)|, the linear transformation ¢1(o) = ¢(0) - k,0

1
giving Gl(s) = G(s)/(1 + kIG(s)) should first be carried out, provided
that in the case of theorem 1.1 ¢1(o) is a monotone increasing function.
The theorems are then applied to the transformed system with nonlinear
characteristic ¢l(o) and transfer function Gl(s).

In the following work the notation ¢(c) is used when the

properties of the nonlinearity are under consideration and ¢(t) is

used when the time varying variable ¢(o(t)) is being discussed.

B. A Theorem For Monotone Nonlinearities

Theorem 1.1

" < B
Y . -

For the system shown in figure 1 let the following hold:

a. 0 < d¢(o)/do :_kz where k2 is a positive number, both ¢ (o)
ana g - ¢(o)/k2 = 0 only for o = $(9) = 0, and dé¢(c)/do be
a continuous function of o.

b. G(s) = N(s)/D(s) with the degree of N(s) at least one less
than the degree of D(s) and with the zeros of D(s) in the left
half s plane. N(s) and D(s) are assumed to have no common

factors in the right half s plane or on the jw axis.

¢ 2
c. Lim f ¢(o)do/|¢(o)| = o or
0 .

lo| » w
Lim |¢(0)| = h|o| where h > 0.

lo' -»> ©



Then a sufficient condition for asymptotic stability in the large is
that

Re[Z(s) (G(s) + 1/k2)] >0 | (1.1)
for s = ju for all real w where
Z(s) = 1+ as + X(s) + Y(s). (1.2)

The time function x(t) = 0 for t > 0 and y(t) = 0 for t < 0. Both

of these functions are assumed to be the sum of a piecewise continuous
function which is Fourier transformable and shifted impulse functions
that satisfy

4
[ x| + |y)]) at <1 (1.3)

with both x(t) and y(t) < 0. The magnitude of the piecewise continuous
component of x(t) is assumed to be less than £ exp (ft) where 2 and £

are positive numbers. The contribution of the impulses to the integral
is to be taken as the strengths of the impulses. o is a positive number.
Corollary 1. In addition to the conditions of theorem 1.1, if ¢(o) is an
odd monotone nonlinearity that is, if ¢(o) =-¢(e0), the assertion of the

theorem holds with (I.3) becoming
40

{ (x| + |y(t)]) dt < 1 where x(t) and y(t) are

00

permitted to take on positive as well as negative values.

Corollary 2. If G(s) has poles on the jw axis, G(s) is required to be

stable in the limit; that is, for an arbitrarily small peseitive number



€, the zeros of 1 + €G(s) must all be in the left half s plane. Also,

the slope condition becomes > § > 0 and (1l.1) becomes > 62 > 0 where 6§ and
62 are small positive numbers. The other conditions are unchanged.
Corollary 3. If c is not satisfied, the assertion of the theorem

holds with x(t) required to be identically zero.

Since the statement of the theorem is somewhat involved, a
discussion of its various conditions is in order. The slope bound
condition a includes a requirement that d¢(c)/do be a continuous
function of o whose purpose is to insure the Fourier transformability
and piecewise continuity of o(t), é(t), and ¢(t); any other property
insuring this result would suffice. Condition b is used to guarantee
that if o{t) and ¢(t) are bounded for all t and approach zero as
t +» =, the other state variables of the system have this same type
of behavior. In addition, having the degree condition holding allows
the as term to be used in the frequency domain criterion since it
insures the Fourier transformability of that component of do(t)/dt due
to -¢(t). The first part of condition c permits the nonlinear character-
istic to have a behavior which ranges from that of a saturation function
to a linear characteristic for large values of o, with the first men-
tioned function being allowed but not the second. The second part of

this condition permits a linear characteristic.

C. Application of the Theorem

In applying the theorem it is convenient to first draw the log
magnitude and phase plots of G(juw) + l/kz. Since |G(jw)| approaches zero

for w sufficiently large, above a certain frequency, W, IG(jm)l < 1/k2,




and hence the phase angle of G(juw) + l/k2 will be less than 90°. The
real part condition will be satisfied with Z(s) = 1 for w > W, If 1t
is also satisfied for w < W, asymptotic stability will be guaranteed.
If the real part condition is not satisfied for w < W, a
frequency varying Z(jw) must be chosen in an attempt to show sfability.
Since the real part condition is already satisfied for w > W Z(jw)
should not disturb this property. The general philosophy to be followed
in searching for a suitable Z(juw) function is to observe the frequency
bands in which the angle of G(jw) + l/k2 lies outside the T 90° band and
then to try to choose a Z(jw) function such that its phase angle when
added to that of G(jw) + l/k2 gives a resultant phase angle which lies

within the T 90° band.

D. Two Z(s) Multipliers

n s + a m s - C
L7 gD o (gD +as
i=1 i §=1 j

0 < c1 < d1 < c2 < d2 < o cm <d

The first product is an RL impedance function and the second is
transformed into an RL impedance function by replacing & with -s.
Therefore, the poles and zeros of the first product alternate along

the negative real axis while the critical points of the second product are



along the positive real axis of the s plane. Expressing this function

in a partial fraction expansion gives

n f, m 1
1o Lows - L oS e
1=1 1 j=1 j

wherefi and lj are positive numbers. Since the partial fraction

expansion coefficients are negative for both the left half and right

half plane poles, the time function corresponding to these poles is
+ o
non-positive. Using F(0) = [ f(t)dt, where F(jw) is the Fourier

-0

transform of f(t), in conjunction with

n s + a m s — ¢

i — 1
T (/) v (—H -1
j=1 S + bi j=1 s dj
gives
na, m c
(E_) m Cai) - 1 as the area assoclated with x(t) + y(t)

1=1 %1 3=1 9

for this Z(s). Since these time functions are non-positive and the magnitude
of this area is less than 1, the given function is an allowed one for general
monotone nonlinearities.

The phase characteristic of this function is more flexible than the
Z(s) multipliers considered in [4] because it is possible to switch batk
and forth from a leading to a lagging function or vice versa if desired.
A typical phase angle plot 1s shown in Figure 2 for the particular case
n=2,m=2, It is to be noted that the magnitude of the angle can

approach 90° as closely as desired.
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Example 1. Brockett and Willems [3] indicated that

2
s

G(s) =
s4 + a s3 + b 52 +cs +d

with a, b, ¢, and d chosen such that the poles of G(s) lie in the
left half s plane was a worthwhile function for future dtudy since
their criterion did not apply to it. This G(s) is to be considered

assuming that k, is large but finite with the nonlinearity required

2
to be monotone. An angle plot of G(jw) + 1/k2 is given in Figure 3.
Let Z(s) = €-8 + p)(s + r)/(~s + q) with p < q. Division of the
numerator by the denominator shows that this Z(s) belongs to the
function 1 class with n = 0, m = 1. The reason for this choide of
Z(jw) 1is that its angle lags at low frequency and leads at high
frequency, which is the required behavior if the angle of the product
function is to lie within the ¥ 90° band. The wariation in angle

for G(jw) + l/k2 at low frequency can be handled by choosing p
sufficiently small. However, a problem is encountered in following
the variation from near + 180 to - 1800. First, let G(s) have four
real poles located at - a

- 8y, = ag, and - a Then Z(s)(G(s)+1/k2)

1’ 4°

is with s = juw

2

(-s + p) (s + 1) ( s 3 4+ R(s)
€~s + q) (s +a)(s+a)(s+ a3)(s + aa)’ k,

where R(s) is the even part of Z(s). The angle of the first term

above with q = a; and r = a, is
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180° - tan_1 8 t:em_1 e tan_1 e -
P a a

The value of p can be chosen small enough such that at low frequency
when the magnitude of the first term is equal to R(jw)/k2 which
itself is positive, the above angle is less than 90°. Since (1.)is
satisfied, asymptotic stability in the large is guaranteed.

2

Next, consider the case of G(s) = sz/((s + 2 ;wms + wmz)x

(s + al)(s + az)) where < 1 and w > 0. The angle of
Z(jw) G(jw) in this case with q and r chosen equal to a

1

and a, respectively is

2 Lw
180° - tan ! ‘-;'—tan —_t

As before, a suitable choice of p will make the angle of Z(jw) (G(jw) + 1/k2)
lie in the %¥90° band for all w and asymptotic stability in the large
has been shown.
2 2 2
Finally, let G(s) = s /(8" + 2 Lw s + wm) . The angle of

Z(jw) G(jw) is, with r = q'= w s

Wy oo (w2

S 1 - 20 - (39

180° - tan ! %’- +otan b —2 L .

2
[1-@Q-206E7
m

If £ > .5, and p suitably chosen,(l.1)1is eatisfied and asymptotic
stability in the large is demonstrated. This Z(s) will not satisfy

(1.1) for z<.S5 and hence no informatidn is available on the stability



-

12

of the system. Fitts [5] has shown that periodic solutions exist
with ¢(oc) = 03 and £ = .01 for the 2 pair complex conjugate pole
case. The author has obtained steady state oscillations with ¢(o)
an odd saturation function for 7 = .045 and with ¢(0) an unsymmetrical
saturation nonlinearity for z = .075.

In summary, with a monotone nonlinearity asymptotic stability
in the large can be guaranteed for the given G(s) if the poles are all
real, if two are real and the other two complex, or if all four are

complex provided that z > .5.

n

2. 1+ z ai exp(bis) + as with the bi's being real numbers,
i=1.

1}
a >0, and ) |ail < 1. 1If all the ai's are negative, this
i=1 :

multiplier can be used for a general monotone nonlinearity but if
some are positive, the nonlinearity must be an odd function. The

n n
angle of this Z(s) is tan—l ) a; sin bw + aw)/(1+ ) a

cos biw)).
i=] i=1

i
This multiplier is capable of providing a rapid change in phase shift
from near -90° to +90°, but the periodic nature of the exponential
part of this function can make it a difficult one to work with.

n
A useful special case results when Z a; exp(bijw) =
i=]

n/2 n/2

3 Z 2a, sin b, w with Z 2la,| < 1. The angle of Z(jw) for
i i i
i=1 i=1
n/2

this case is tan-l( 7 2ai sin bi w + o w) which is simpler than
i=1

the general result. On the other hand, the angle variations in the

function are constrained; if o is a very small number, the angle
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lies in a p 45° band at low frequencies. The use of this class of
multiplier is illustrated by the following example.

Example 2. Dewey and Jury [2] considered the case of G(s)=40/s(s+1)(sz+.85+16)
using theilr criterion for monotone nonlinearities and showed stability
for nonlinearities having a slope restricted to (e, 1.43). The system

is stable for linear gains in the sector (e, 1.76). Because G(s) has

a pole on the jw axis, corollary 2 must be applied rather than the
theorem. From the root locus plot for 1 + e€G(s), where ¢ is a small
positive number, it is seen that G(s) is stable in the limit. From the
Figure 4 plot of the angle of G(jw) + 1/1.76, the angle lies outside the
* 90° band in the frequency ranges 0-2.75 and 2.97-3.75, lagging in the
former case and leading in the latter. Although the peak deviation
outside the T 90o band is only 36o in the lagging direction and 16°

in the leading direction, the peak slope of the angle in making the
transition from outside the ¥ 90° band to the inside is about 60°/radian,
making it impossible to use a Z(s) of the function 1 class. The magnitude
of the slope of a Z(s) function belonging to the type 1 class is less
than or equal to the slope of the angle of the double pole function

2 tan-l w/a which is 2a/(w2 + a2). For w = a = 3, approximately the
values which would have to be chosen in attempting to use the function,
the slope would be about 20°/radian, less than half the required value.
Therefore, a function of the type 2 class is chosen in an effort to

show asymptotic stability. Since the required angle for Z(s) is less



*Z°7 dTdwexs jo 3zed 3IS8ay3J IYI 03 Juduylzad sjoyd ITBuy ¢ IanSy4

14

e e e e ~ 081~

«06 -

0

«06 +

e ettt J.081+



15

than &50, and a leading angle followed by a lagging angle 1s required,
Z(jw) was chosen equal to 1 + j.999 sin 1.118uw + lo—lnjw. Comparing
this function with the time doméin condition (1.3) shows that ¢(o)

is required to be an odd monotone function. The 1.118 coefficient

was picked to give an angle for Z(jw) (G(jw) + 1/1.76) at w = 2.98,

the frequency at which a zero occurs on the jw axis for G(jw) + 1/1.76,
of £ 90°. The amplitude of the sine term was chosen close to 1 to

give a large change in angle while still satisfying the integral
condition (1.3)and the 10—10 coefficient was chosen so that the a jw term
does not come into play at low frequencies. The slope of the angle of
this multiplier at w = 3 is about 60°/radian. The plotlof the angle

of the prdduct function also given in Figure 4 shows that the angle
always remains within the t gq° except for w = 0, 2.98, and « at which
frequencies the angle magnitude is 90°. Calculation of the real part
of the product function at w = 0 gives .738. If k2 < 1.76, the real
part of the product is positive at w = 2.9R, At =, thds quantity is
1/1.76. Therefore, since (11llis satisfied with an inequality sign; all
the conditions of corollaries 1 and 2 are satisfied and asymptotic
stability in the large is guaranteed for slopes in the sector (e, 1.76)
for ¢(0) equal to an odd monotone nonlinearity.

In order to find an enlarged sector of assured asymptotic
stability for the general monotone nonlinearity, Z(jw) = 1 - .95
exp(—l.OASjuS + lo—lojw was chosen for use with G(jw) + 1/1.7. The
reasons for the choice of this function and the parameters for this

case are identical with those of the previous case except that the

coefficient of the exponential was chosen to give a zero phase shift
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for Z(jw) in the middle of the transition region for the angle of
G(jw) + 1/1.7. The slope of the angle of this Z(jw) at w = 3 is

about 30°/radian. Therefore, k2 was reduced to 1.7 when it was

found to be impossible to satisfy (1.1)with the given form of Z(jw)

and kz = 1.76. Figure 5 gives the pertiment plots for this example
which show that the angle of Z(jw)(G(jw) + 1/1.7) is in the T 90°
band. At w = 0 the angle of the product is -90° but the real

part is 2.38 while at w = = the angle is 90° with the real part being.
(1-.95cos 1.045w)/1.7. Therefore, the conditions of corollary 2 are
satisfied and asymptotic sfability in the large 1is guaranteed for

the general monotone nonlinearity with slope &n the sector (e, 1.7).

E. Proof of Theorem 1.1

Let the system be excited by initial conditions. The assumptions
on G(s) and on ¢(c) are sufficient to insure the continuity and Fourier
transformability of o(t), 5(t), and ¢(t) on any finite time interval
[6] - [9]. Use will be made of these properties at several points

in the proof. First, it will be shown that

T
n
[ (808 + x(6) + y(t) * (a™(e) - ¢*()/R,))e"(t) at =

(o)

T
n

e(T) [ €"(®) - 7 (0)/k,) ¢7(D)de (1.4)

o
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where c(Tn) is a positive number and * denotes convolution. The
variables Gn(t) and ¢n(t) are equal to their non-superscripted
counterparts in (0, Tn) and zero outside this interval. Let
x'(t) and y'(t) denote x(t) and y(t) respectively with the
impulses removed. The integral involving these functions on
the left hand side of (1.4) is given by

n o

[ ] %) (M (e=2)=0"(t=-0) /k,) 6" () dh de +
o]

n 00

[ ] vy ey - ¢“(t—x)/k2) o7 (t) da ot (1.5)
o o

since x'(A) = 0 for A > 0 and y'(}) = 0 for A < N. Because the

primed functions, on(t) and ¢n(t) are continuous functions of t,

and the integrand is non-zero over only a finite interval of time,

the order of integration may be interchanged [10] to give

T
o n
[ x0) [ (6"(e-2) - ¢“(t-x)/k2)_¢“(c) at dx +
- o )
[ ') [ (@7 (e=2) = o7 (=) /ky) o7 (e) dt an. (1.6)
0 o
u
With the impulsive component of x(t) given by Z a, S(t + bi) and
1=]1

v
that of y(t) by Z cy §(t - di)’ where a

' b,, Ci’ and di are
j=1

S |

positive numbers, their contribution to the left hand side of (1.4) is

T
u n
n n n
121 a, £ (o7 (e+b,) = ¢ (t4b,)/k,) ¢ (t) dt +
T
4 n n n n '
L ooy [ (o7(t=d)) - ¢7(t=d)/k,) o (¢) dt . (1.7
j=1 o
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Appearing in hoth (1.6) and (1.7) is an integral of the form

T

n
(D = [ ("(e-T) - 6"t - T/Ky) e7(r) dt
(o]

(1.8)

where T is a real number. At this point a positive bound will he

developed on (1.8). Let (1.8) be rewritten as

T

n
n . (t - T)
T = | (ci(t -T) —-Jt—F———‘— ) ¢:(t) dt +

o "2

Ta n ¢E(t -
/ (o (£t - T) - . ) o_(t) dt +
o 2

T n

n o (£t - T)
/ (c:(t -7 - -3 - 5 47 (e) de +
0 2

Tn n ¢E(t - T) o
[ 0l = 1) = =) ¢l (1) dt
o 2

where the + and - subscripts refer to the positive and negative
values of the associated functions, respectively: as an example
n . n n

¢+(t) is equal to ¢ (t) when ¢ (t) > 0 and zero otherwise. The

lemma may be applied to the first two integrals since on(t) and

¢n(t) are continuous functions of time that are zero outside (0,

the two functions forming the integrand of both integrals are

non-negative and non-positive respectively, and
d(0-¢(0)/k2)/d¢(0) = [d(0-¢(0)/k2)/do][dc/d¢(o)] =

[1 - (dé(0)/do) (1/k,)11do/de ()] > 0 ,

(1.9)

Tn)

(1.10)
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showing that o—é(o)/l7 is a monotone increasing function of ¢ (o).

Applying the lemma gives
T

n T n
n 6, (t - T n ¢ (t=T)
LM < [ (@t =T - ) ¢h0) dr + [ (@R (e-T) - =)
o 2 o 2
T n T n
n ¢, {t) n ¢
o (t) dt < (o:(t) - —{}—~> op(t) de + [ (o7(t) - <) o7 (t) dt
0 2 0 2
Tn
= [ (oce) - By ey ae . (1.11)
o 1‘2

Using (1.6) and (1.7) gives for that part of (1.4) involving x(t)+y(t)

oo u v
[ ') +y'ONIO) d+) aI(-b)+ ] c,I(d,). (1.12)
. 4o 1 i 451 174

Now, since x'(0), vy'(0), ai and c, are non-positive, application

i
of (1.11) and (1.12) yields

T
n
[ (x@) + y(©) * ("(e) - ¢7(£)/ky)) o™ (t) dt >
(o)
+ u v
I o +yana+ ] oa+ [ e 110, (1.13)
—~00 i=1 j =] ’

Using (1.3) from the statement of the theorem it follows that the
left hand side of (1.13) is greater than -I(0) and hence that the
assertion of (1.4) 1s correct.

The next step im the proof is to apply Parseval's theorem to a
part of (1.4) and to use the frequency domain condition (1.1). Let
o™ (t) = o¢n(t) +0,"(t) and 6" () = &¢“(:) + 0,7 (t) vhere o,"(t) and

&¢n(t) are those components of on(t) and én(t), respectively, due to the



feedback signal -4(t) and cin(t) and 61n(t) are due to the initial

condition excitation of the system. Then

T
n
[ (88 + x(£) + y(£)) * (a"(£) - $7(£)/k,)) ¢"(t) dt +
o
Tn Tn
a [ o"(e) ¢7(e) dt = [ ((8(e) + y(£)) * (0,7(E) = 87(£)/k,)) &7(E) dr +
(o] [o]
Tn Tn
[ () * (0,"(6) = ¢"(e)/k,y)) 67(t) dr + o [ o (e) o°(t) dr +
(o} o}
T T

n n
+ [ (O + x(2) + () * 0 "(£)) 67(e) de +a [ o,7(e) o7(e) dt.
(o} (o)
(1.14)

Several substitutions will be made in the integrands én the right
hand side of (1.14). In the first and third integrals let 0¢n(t) be
replaced by o

* . e n %
n (t) and c¢n(t) by o n (t) respectively where

¢ ¢
o;‘*u>=-f4[c0w>Fw“u>n
and
e n * -1 n
5,0 () =F 13w 6w FION(O)]]

with F and F_1 denoting the direct and inwverse Fourier transform
operations, respectively. The values of these integrals are unchanged
since the starred quantities are equal to their unstarred counterparts

*
in (O, Tn). The value of o " (t) for t > Tn does not affect the first

¢
integral since 6(t) + y(t) = 0 for t < 0 and ¢"(t) = 0 for t > T The

latter reason also shows that the third integral is not influenced by

. *
the values of ¢ n (t) for t > Tn. In the case of the second integral

¢



x(t) being non-zero for t < 0 implies that oén(t) cannot be

*
replaced by o¢n (t) without changing the value of this integral. N

Therefore, the portion of o¢n

account in making the substitution. Let

n * n
o¢ (t) o¢ (t) + 0

d

6 (t) (1.15)

where o¢d(t) is that component of °¢n

these substitutions the first three integrals on the right hand side

*
(t) occurring in (Tn,m). With

of (1.14) are

T
n
J (e + v * 0, Mo - $M) /) $7(e) e+
o
T T
n n* n n B, nx n
[ (@) * Co(e) - ¢7(0)/ky)) ¢ ()t +a [ 0,7 (0) 67(t) dt
(o) o)
T
n d n
- f (9,7 (£) * x(£)) o7 () dt . (1.16)

o

For the final step in the proof ‘a bound is required on the
last integral of (1.16) in terms of |¢n(t)|max, the largest value of
|¢n(t)| in (O,Tn). |c¢d(t)| is given by .

t
| [ 80D ot - ] , 2T, (1.17)
(o}

where g(A) = F-l(G(jm)). Because of condition b of the theorem, it is
possible to find two positive numbers q and r such that |g(x)| < q exp(~ri).

Using this bound gives

t
d
|o¢ ()] < {_T q exp(-rA) |¢"(t) | ey =
n

(a/r) |67 exp(-rt) [exp(rT)-1], t 2T . (1.18)

* “\\
(t) for t > T must be taken into AN\



The lower limit on the integral has been changed to t - Tn since
d>n(t) is zero outside (O,Tn).
The piecewise continuous and impulsive components of x(t) will

be considered separately. Since |x'(t)| < % exp(ft), using (1.18)

gives
|°¢d(‘) *x'(t) | <

-T +t
n
14 PRI exp(£)) exp(-r(t-1)) [exp(rT )-1)dA

= :(r + f) |4’n(t)|max [exp (rT )-1] exp(=(r+f)T ) exp(ft) (1.19)

0 <t=x<T
- =5

Using this result gives

T T
n
[ @00 * x'®) e <|o ()]

nod
o “(t) * x"(t)|dt <
o ¢ -

max f
[o]

) o1 2
:L(r(i)i) max (1 - exp (-rT )¥(1 - exp (-£T )) E.M1|¢n(t)|2

max
(1.20)

where Ml is a positive number independent of T .

n
For the impulsive case,
o d(t) * x(t) = E a, o d(t+b ) (1.21)
¢ =1 1 7¢ i :
and
T T
n d n v moq n
| [ €0,%() * x(£)) ¢"(t)dt| < | la,| [ |0, %(t+b,)e"(e)]de.
° ¢ =1 b o ) i

(1.22)



24

1f bi < Tn, the use of (1.1%) in the right hand side integral of (1.22)

gives
T ' T
o4

n
[ |o
P

(t+bi)¢n(t)dt] < 1 |¢n(t)|2 [exp(rT )~1] f exp(-r(t+bi))dt
r max n Tn—bi

(1.23)

The lower limit on the right hand side integral is Tn—bi since

o¢d(t+bi) = (0 for t < bi - Tn' Evaluating (1.23) gives

2 2
i; [6%(0)] %,y [L-exp(-rT)1[l-exp(-rb )] < M, [6™eD) | (1.24)

where M21 is a positive number. Finally, if b1 > Tn’ the left hand
side of (1.23) is less than or equal to

T
n

%WmﬁmeJﬂguWMﬁW=?ﬁm;x

X

[exp(-r(b, = T )) - exp(-r b)][1 = exp(~r T )] 5_M31|¢“(t)|2max

(1.25)
where M3i is a positive number. Using (1.20), (1.24), and (1.25) gives

T
n

u
uf%%wﬂmwmm1%+&hm9Wmﬂm

= M)4"(e) | (1.26)

max

where M3 is the largest of the M

number independent of Tn' That is the desired bound.

21's and M3i's and M is a positive

Since ¢n(t) is zero outside (O’Tn)’ the limits on the first 3

integrals of (1.16) may be changed to (-»,~). Also, because of the




conditions on the various functions involved, Parseval's Theorem is
applicable to these integrals. Its application gives
4o

[ () + x(e) + y@®) * 0,7 (8) - " (1)/ky) 6" (x) de +

—00

S n* n 1 o
a [ 5 ¢Neae = - 5o [ ((14X3w) + Y(W) (CQW) + 1/ky)
*al we@w) [FIe"0)1] a0 (1.27)

Since the imaginary part of the integral on the right hand side of (1.27)
is zero, (1.27) may be rewritten as

40
- L JL R+ X(w) + Y(Ju) + afw) (G(Jw) + 1/k,) IF{s™(£) 1] %du.

(1.28)

From (1.1)it follows that (1.28) is non-positive. Combining (1.4),
(1.14), (1.16), (1.26), (1.27), and (1.28) gives

T

n
() [ @™(t) = 6" (B)/k,)8(t)dt +ad(T ) -aB(0) <
(o]
T

n Tl’l
1] 0,0 * xe) Pwae] + 1] o) Hx(e) * 0,0 +
o o
(y(e) * 0,7(t)) + ao,"(£)) #"(r) dt] (1.29)

< Mo (t) |2mElx + (o) ?1.30)

where

[- ]

P= [ o (t) + x(t) * oy(t) + y(t) * o () + a&i(t)ldt
(o}
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and

o(T )
oT) = [ ™ ¢(o) do.
[o]

Therefore,

Py n 2 n
(T ) <=M o (t)| max * Plé (t)]max] + 0(0). (1.31)

Using the approach given in Lefschetz [11], 1let 'I‘n be chosen such that
|¢n(t)|max occurs at Tn. Then with the first part of condttdon c
hélding, it follows that o and hence ¢ (o) are bounded; tf this were
not the case, inequality (1.31) would not hold for large values of
|o|. If the second part of conditien ¢ holds, a quadratic Liapunov
function may be found using the approach of Rekasius [12] that
shows the boundedness of ¢ and ¢(0).
Since the right hand side of (1.31) is bounded, it follows from
T
(1.30) that f n (on(t) - ¢n(t)/k2) ¢n(t)dt is bounded, from which
o

asymptotic stability in the large follows, using the arguments given

in Aizerman and Gantmacher [13]. This completes the proof of the

theorem.

In order to prove corollary 1, the lemma is applied directly

to (1.8) to give |I(T)| < I(0) instead of I(T) < I(0). (1.13) then

becomes
T

n
[ ] () + y0)) * ") - $"(e) /) $P(erae] <
o}

+eo u v
U dx" o + [y'a)dx + T la I+ I le ] 1. (1.32)
1=1 j=1

—00
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Using the condition of this corollary, it follows that the left
hand side of (1.32) is less than or equal to I(0), from which (1.4)
follows. The remainder of the proof is unchanged. This completes
the proof of corollary 1.

To prove the assertion of corollary 2, it is first shown

that if

Re 2(G + 1/k2) > 8, > 0,

Re Z(G/(1 + €6) + 1/k,) > 6, > 0

3>

for € sufficiently small. 63 is a positive number. By a straightforward

calculation Re Z(G/(1 + €G) + 1/k2) is

Re Z (G + 1/k,) + e(Re Z ) (612 (1 + e/k,) + 2(Re Q) /k,]

(1 + eR)2 + (eX)2

The first quantity in the numerator is non-negative. Since Re Z 1is
non-negative, the second quantity in the numerator may be negative if
-Zkkz +€) < Re G < 0. For this interval € must be chosen small enough

such that the numerator is positive. This is guaranteed by having

=8,k

“7Re Z Re G

in the interval. Let the linear transformation ¢1(c) = ¢(0) - €0
be applied to the system. Thenxcl = G/(1 + € G). The stability of
the transformed system will guarantee the stability of the original
system, If ¢ is chosen to be less than both § and the right hand
side of the ¢ inequality, the transformed system will satisfy the

conditions of the theorem for the noncritical cases. Q.E.D.
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The proof of corollary 3 follows directly from the proof
of the theorem with x(t) = 0. (1.31) becomes ¢(Tn) §_§-|¢n(t)|max + 6(0).
Since ¢(c) is a monotone increasing function of o, for |o| sufficiently
large the left hand side of this inequality will become greater
than the right, showing that o(t) and ¢(o(t)) are hounded. The

remainder of the proof is unchanged.

F. Theorem for a Nonlinearity With a Monotone

Bound

This theorem is an improved version of one given in [4]. The
two improvements consist of permitting Z(s) to have a corresponding
time function that is non-zero for t < 0 and of taking the symmetry
of the nonlinearity into account, resulting in x(t) and y(t) being
allowed to take on positive as well as negative values.

Theorem 1.2. For the system given in figure 1 let the following
conditions hold:

a. A¢m(o) o < ¢(0) 0 < B¢m(o) o, where A and B are real

numbers satisfying 0 < A <1 and 1 € B < =, ¢(0) = ¢m(0) =0,
o ¢(0) <k oz‘where k >0and o ¢m(c) >0 for o ¥ 0,

d¢ (c)/doc is a continuous function of o, ¢m(c) is a

continuous monotone increasing function of ¢ having an

odd part ¢mo(c) that satisfies |¢m(o)| §_C|¢m°(o)| and

lo (@] < Dle (@}

b. Conditions b and ¢ of theorem 1.1.

Then a sufficient condition for asymptotic stability in

the large is that
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Re [Z(Jw) G(jw) + E (C(Jw) + 1/k)] > 0 (1.33)

for all real w where E is a non-negative number. Z({w)

is defined as in (1.2) but (1.3) becomes

40
BOD ¢

A O AOIEED a: +7 c:] -

=00

B

40
2 T +y' T ())de + ] a, + ] c; 1 <1 (1.34)

+ + + +
where x' (t), y' , a; and c, are the positive portions or values

of the corresponding non-superscripted functions or numbers and

x' (t), y' (), ai_, and c, are the negative portions or values
of the corresponding mon-superscripted functions or numbers.
Proof. Starting with (1.4) of the proof of theorem 1.1, let this

equation be replaced by

T Tn

n
[ () + x(0) + y(6)) * o™ (8)) o™(t)dt = (1) [ o"(r)e"(t)at
(o)

(1.35)

as the condition to be shown. Repeating the steps used to obtain
(1.6) and (1.7) gives
T
° 4+ - e " n
J 7T +x'0)) [ ot - ) (e)de dr +
-0 o
T
oo + - n n
[ 70 +y'700) [ ot - 2) ¢"(t) dt da (1.36)
0 o

and
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T T

n _ n
) ai+ £ o (t + b,) o (t)dt + ) a, £ o (t + bi)¢n(t) dt

T T

n n
+7e [ e-ap S"war+ e [ oM(e-apet(e)de. (1.37)
o} (o]

T
I(T) then becomes I(T) = f n on(t -T) ¢n(t)dt. At this point the

o
proof differs from that of theorem 1 for it is desired to develop
both positive and negative bounds on I(T). First a bound is
developed on |I(T)|.

T
lTml < B [ [ -1 ¢ M)t
(o]

T T

n n
n n n n
< BC ({ lo%(t = 1) o "(t)]|dt ch({ o'(t) ¢ “(t)dt
(1.3R8)
where use has been made of the lemma. ¢mn(t) = ¢mn(o(t)) and
n n
¢m° (t) = ¢mo (o(t}). Continuing the development gives
T T
% n n T on n
BC [ o"(t) ¢ (t)dt < BCD [ o "(t) ¢ "(t)
o o
Tn
< B2y oMoy ¢ (o)ar . (1.39)
o .
The negative bound on I(T) is then
im > - 2210 . (1.40)
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For the positive bound the same procedure as in theorem 1 is uded

to give

T T T
n

n n
[ "e-meT(tyat < [ o FET) 62()de + [ " (e-m e (t)de
(o] o [o}
T T
n n n n n n
< B of o (t=T) ¢ “(t)dt + B [ ol (t-T) 6 _ (t)de

T T
n

n
<B[ dMe) o M)dr <2 [ o™(e) o"(t)dr . (1.41)
[o] (o]

Using these two bounds in (1.36§ and (1.37) gives

T
n
[ () + y(t)) * o™ () o™ (t)dt >

o}

40

-2 o rytony e+ ] a,t 4] e, 71 1(0)

40
+% [f 7w anasLa "+ e 1100 . (1.42)

Using (1.42) and (1.34) gives (1.35). The remainder of the proof is

similar to that of theorem 1 with the left hand side of (1.14) replaced

by
T T
n

n
[ (se) + x(e) + y(t)) * o™ (t)) ¢"(t)dt + a [ (r) ¢"(t)de
(o] (o]

T

n
+E [ (o"(t) - ¢"(t)/x) o™ (t)dr . (1.43)
(o}

Q.E.D.
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The frequency domain condition (1.33) is certainly not as
easy to apply as (1.1), (1.33) was obtained because of the necessity
of using (1.35) in order to apply the various conditions on ¢ (o).
An example of the application of this theorem is considered next.
Example 3. Let ¢(o) be an odd function defined for positive

values of o by

$(0) = o » 0 <o <1.25
= -0+ 2.5 , 1.25 < g < 1.5

= (50/3)/(140) , 1.50 < ©

and let G(s) = K(s + &) (s + 50)2/(s + .1)(s + 1)(s + 1000)%, with K
being large but finite. It is assumed that the kinks in the ¢ (o)
curve are smoothed out so that the derivative is a continuous
function of 0. A plot of this nonlinear characteristic reveals
that a convenient choice is to take ¢m(c) as an odd function equal
to»¢(c) for positive values of o except for 1.25 < o < 3.01 for

which interval ¢m(o) = 1,25, ¢m(c) is then a continuous odd

monotone increasing function of o. With this choice A= .8, B=C =D =1

+oo
and (1.34) becomes f (|x(t)| + |y(t)])dt < .8. Since K is to be

large but finite, let-E = 0 to give Re Z(jw) G(jw) > O as the
criterion to be satisfied. G(jw) has an angle that lies outside
the ¥ 90o band in a lagging direction at low frequencies, at higher
frequencies the angle approaches + 90° and then - 90° at very high

frequencies. Because of this behavior, the Popov criterion will not

show stability. Let Z(s) = (s + 1)(s + 1000)/(s + 4). This
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particular function has the proper phase characteristic, that is,
leading at low frequencies, almost zero at intermediate frequencies,
and then leading at high frequencies to give a produet with an angle
in the * 90° band. Since 7(s) G(s) = K (s + 50)2/(s + .1)(s + 1000),
it is seen that Re Z(jw) G(jw) > O for all w. Expressing 7(s) in

a partial fraction expansion form gives Z2(s) = s + 997 - 2988/(s + 4).
The left hand side of (1.34) is .937, and hence this condition is
satisfied. Therefore, the given system is asymptotically stable in

the large.

-G, Conclusion

This chapter has presented two theorems which allow the
Z(s) multiplier to correspond to a function of time that is non-zero
for t < 0 as well as for t > 0. This innovation solves the problem
of obtaining a Z(jw) whose angle varies with equal freedom
between 0° = +90° and 0° -~ -90°. The generalized RL Z(s) multiplier
considered shows that a nonlinear system having a monotone non-
linearity with a slope in the sector (0,k2) is stable provided that
the system is stable for linear gains in the sector (O,kz) and
provided that the angle changes slowly enough with frequency.
Although this work gives improved results, it is not clear how close
these results are to the actual absolute stability limit. Additional

study is needed to resolve this matter.
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While the two Z(s) functions discussed appear to be quite
useful, if it is not possible to show stability with either of these
two, it is not clear how one should go about generating additional
Z(s) functions with more desirable characteristics, other than to
use trial and error. The reason for this is the need to consider
simultaneously both the time énd the frequency domain beh#vior of a
possible candidate for a Z(s) function. This appears to be a
worthwhile area for further research.

Condition ¢ of theorem 1.1 is one way of guaranteeing the

boundedness of o(t) and ¢(t). If a certain nonlinearity does not

satisfy this condition, the theorem may still be applied provided that

a Liapunov function can be found that will show the boundedness
of the state variables of the system. However, finding a

suitable Liapunov function may be a difficult task.
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11, Appendix 1

Lemma. If fa(t) and fb(t) are two continuous time functions which
are zero outside the time interval (0, Tn), fb(t) = h(fa(t)) where
h is a plecewise continuous monotone increasing function of fa’ and
if either fa(t) and fb(t) are both always non-negative or non-

positive or h is an odd monotone function with h(0) = 0, then

T
n
o[ (£,() £,(t) = [f_(t) £, (t + T)|)de > 0

for any real value of T.

Proof. Given a value of T > 0, let the summation

n

) |£,(84) £, (84 + 1| & (A1)
1=1

be formed where 8§ is a positive number chosen such that T/§ is an

integer and n is chosen such that n§ = Tn - 61 where 61 is a

positive number less than §. Let a ranking of the magnitudes of
the values of fa(t) and fb(t) that can appear in the summation be

set up such that lfall > IfaZ' :-|fa3"" for fa and a similar ordering

Ifbll 3_lfb2| 3-lfb3 ..« holds for fb' Since h is monotone increasing
and either an odd function or fa(t) and fb(t) are bhoth always non-
positive or non-negative, values of lfail and lfbjl with the same
numerical subscript occur at the same time or the ranking can be

arranged such that they occur at the same time if two or more magnitudes

are equal, Using the ranked magnitudes, a table of product values
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that may appear in the summation is formed as indicated below.

|fb1| lszl |fb31... lfbjl... |fbn|
IfalI falfbl lfalfb2l
l£200  1£,05,] faof2
|£,5]
E3
Ifan' fanfbn

The diagonal elements in this table correspond to the terms that

appear in (Al) with T = 0. For any value of T, the terms-|fai|
and 'fbil can appear only once, if at all, in the summation. This
means that of the product elements appearing in (Al), only one
element can occur in a given row and one element in a given column
in the table of product values. Also, for T # 0, the summation

terms appear as off diagonal elements in the table. Next, by

using a row and column counting process it will be shown that
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n n

121 £ (61) £, (81) 2'121 |£_(61) £, (81 + )| (A2)
for T # 0.

Consider the elements on the right hand side of (A2) that
appear in the first row or first column of the table of product
values. The maximum possible number is two. If it is zero or
al bjl or £1fp1 2 [f,4fy)]

is formed. The first row and the first column are then removed,

one, an inequality falfbl >N, falfbl-i |£

giving a reduced table of product values. If there are two elements,
it it necessary to consider three cases.

a. The two terms are |fa and |f In this case the

jfbll al bjl

two diagonal terms falfbl and fajfbj are used to give the
inequality f_ f . + f jfbj Ifajfbl| + |falfbj|' Since the only

two elements possible in the first and jth rows and columns have

been bounded by the diagonal terms associated with these rows

and columns, the first and jth rows and columns are removed,

giving a reduced tahle of product values.

b. The two terms are |faifb1' and |fa1fbj| with 1 < j. An

inequality that may be written is f ,f ., + f . f . > |f ifbll + |f a1fpyl

If there is no term in the ith column, IfqlfbiI is used to bound

Ifalfhjl’ since |f lfbil > |f lfbjl’ giving as the desired inequality
+

faafor * farfor 2 [fagforl * [F40fys

columns are then removed to give a reduced table of product values.

The first and ith rows and

If there is a term in the ith column, say |f the |f

kfbi| ak bi|

terms are bounded by the |f f | term and the |f

and |f al

alfbj| ak b1'
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term, giving the inequality |f l + |f f £ .|+ |f

a1tb1 akfbjI > 1f, b3
Combining this bound with the one involving ]faifbll gives

akfbi,'

f + |f

falfbl + aifbi akfbjl 3-Ifaifb1l + 'falfbjl + |fakfbi' as the

overall inequality resulting from this step. The |f | term has

akfbj
been borrowed to obtain the bound. This term is not an element of

the summation since the kth row and jth columns by hypothesis each

have one element. A reduced table of product values is obhtained

by deleting the first and ith rows and columns and adding the lfakfbj'
term as one to be bounded by the remaining diagonal elements. The

array obtained has the same properties as the original array with regard
to each row and column having only one element. Therefore, the

process may be repeated on the reduced product value table.

¢. The two terms are lfaifbll and |f | with 1 > j. The

alfbj
strategy of b is repeated with the roles of the ith and jth
column being taken by the jth and ith rows, respectively. The
process is then applied to the first row and column of the reduced
table of product values and repeated until there are no terms
left in the final reduced table. Adding together the inequalities
obtained at each stage of the process gives the left hand side
of (A2) plus additional terms greater than the right hand side
of (A2) plus the same additional terms. Upon cancelling the common
terms, (A2) results. From (A2) it follows that

n

§ 1-{1 (£,(61) £ (81) - [£_(81) £ (81 + TV|)> O,
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Since
T
n
of (f (O)F, (8) - !fa(t)fb(t + T)dt =
n
1-Z=1 (£,(81) £, (81) = [£,(81)f, (81 + T)[)8 + F,

where F is a real number that can be made arbitrarily small by
a suitable choice of 8§, taking the limit as 8§ - o gives the
assertion of the lemma for positive T. A similar discussion

shows that the lemma also holds for negative T. Q.E.D.
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IV CHAPTER II. BOUNDS ON THE RESPONSE OF AN AUTONOMODUS

SYSTEM WITH A SINGLE NONLINEARITY

A. Introduction

This chapter is concerned with the calculation of bounds
on the response of the single nonlinearity system of Figure 1.

For the first theorems it is assumed that the external input
to the system is zero and that the system is excited by initial
conditions only. Then, Fourier transformable inputs of a certain
class are permitted in later theorems. If the input is itself
bounded, the bounds which are calculated on the response enable
the showing of Liapunov stability but not asymptotic stability.
The bound that is determined is on the function ¢(c(t)) and usually
takes one of the forms shown in figure 6. Once a bound has been
obtained on $(o(t)), a bound can be calculated for o(t) for
specific nonlinear characteristics.

Pertinent references include the survey paper by Kalman and
Bertram [14] in which it 1is.-pointed out that an exponential bound
can be obtained on the response by the use of Liapunov functions.
The maximum value of Vv/v = -n is calculated over the space in which
the response is confined. The bound is then v(t) < v(0) e—nt. The
bound on v(t) can then be converted into a bound on the system variables.
Sandberg [15] considered the problem of a time varying nonlinearity

confined to a linear sector and gave a frequency domain condition



BOUND

ON

0IQP)

41

T

Figure 6. TypicalBounds on ¢(o(t)).
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guaranteeing that the state variables approach zero exponentially
with time. In the single stationary nonlinearity case with a

zero lower bound on the nonlinearity, this frequency domain

condition is equivalent to Re G(jw) > 0, which is a rather restricted
criterion. Tsypkin [16] obtained an analogous result using a Popov
type approach for a sampled date system having a single nonlinearity.
Using a Liapunov approach, Yakubovich [17] showed that for a nonlinearity
confined to a sector (0, k), if Re G(jw - a)(1l + ajw) + 1/k > 0, then
the response of the system satisfies |o(t)] :_Me—atlc(O)l where M

is a positive number. This last result is similar to the Popov
criterion except for the shift’in the argument of G(jw).

Although the criteria of the last 3 references show the
existence of a bound of the desirdd type, these references do not
consider the problem of calculating a value of M. Also, the
corresponding frequency domain stability criteria for these works
aremore restricted than those given in chapter 1. Therefore, the
main object of this paper is to develop theorems giving bounds on
the response of systems using the approach employed in the development
of the stability criteria of chapter 1. Once a system has been shown
to be asymptotically stable in the large using these criteria, it
will then be possible to calculate a bound on the response using the

results of this chapter.
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The first three theorems deal with those systems in which it
is possible to show stability with x(t) = 0. Theorems 2.4 and 2.5
give bounding expresasions for those cases in which x(t) # 0. Since
for this case a bound must be available on the response of the
system of the form &(t) §_M|¢(t)|max, where M is a positive number
and |0(t)|max is the largest value of ¢(t) in (0, Tn), the application
of these latter two theorems requires somewhat more computation than
the first 3. The bounds for these first five theorems are calculated
using a "completing the square' approach 0f Aizerman and Gantmacher [13].
Under certain circumstances an improved bound ean be found using the approach of
Lefschetz [11]. This 1is used in theorem 2.6 and 2.7. Theorem 2.8
gives a bound on the response with an external input applied and
theorem 2.9 considers a special case which arises when dealing with
systems having lag compensators. Finally, the possibility of obtaining
an improved bound when the system is in the linear region is

discussed.

B. The Theorems

Theorem 2.1. For the system of figure 1 excited by initial conditions
only let the following hold:
a. O §_d¢(c)/do'§ k2 where k2 is a positive number, ¢(o) and
(o - ¢(c)/k2) = 0 only for ¢ = ¢(c) = 0, and d¢(o)/do be

a continuous function of o.



44

b. G(s8) = N(s)/D(s) with the degree of N(s) at least
one less than the degree of D(s) and with the zeros
of D(s) having negative real parts whose magnitude is
greater than or equal to the positive number a.

c. Re H(jw) = Re[e(l + Y(Jw))(G(3jw - a) + l/kz) + djw G(jw - a)

+ adG(jw - a)] > b >0

where b, ¢, and d are positive numbers, y(t) is composed
of delayed impulses and a piecewise continuous function

that satisfies y(t) < 0 for t > 0, y(t) = 0 for t < 0 and

oo

[ Iy)] %t <1 . (2.1)
(o]
Then o
0(Tn) ~-2aT f mz(t)dt o(0)
o(T) = [ 6(o)do < e " [—————1+ [ 4(0)do ]
n
o 4d o
(2.2)

where m(t) = F L [P(jw) 0(ju)] with

p(t) = e3F[(c + 2ad) oin(t) +4d 61“(c>] + c(oin(t) et x yen®

and 0(jw) 1is defined by 1/Re H(jw) = Q(jw) Q(-jw). oin(t) is equal
to the inttial condition component of o(t), oi(t), in (O, Tn) and

zero outside this interval. Similarly, éin(t) is equal to the
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initial condition component of éi(t) in (O, Tn) and zero elsewhere.
(cin(t) * y(t))n is equal to oin(t) convolved with y(t) in (0O, Tn)

and zero elsewhere.

Proof. First it is desired to establish the non-negativeness of

certain integrals which play a prominent role in the development.

Using integration by parts with é(t) ¢(t) being integrated gives

T
n
[ €2 5(e) a(n)ae = &*2Tn o(T ) - 0(0)
o
Tn
-2a [ 2% a(r)ar . (2.3)
o
Also,
T T
T 2at N 2at
2a [ e o(t)e(t)dt - 2a f e ¢(t)dt > 0 (2.4)
0 o
o(t)
since o(t)¢(t) and $({t) are both non-negative and &(t) = f ¢(o)do < a(t)e(t)

o

because of the monotone increasing property of ¢(o). Adding the first

integral of (2.4) to both sides of (2.3) and rearranging gives

2aT Tn 2at Tn 2at
e T o) +2a [ & o(t)e(r)de - 2a [ e ro(r)ar
(o] (o)
T T
T 2at - . 2at
= [ e o(t)e(rddt + 2a [ e“%" o(t)e(t)dt + ¢(0) (2.5)
o o

where the sum of the second and third terms on the left hand side of
(2.5) are non-negative by (2.4).

The second relationship to be established is
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T
% 2at . n n n
[ e (07 (t) - ¢ (£)/k,)) ¢ (t) dt +
o
Tn 1]
t
[ €% ) * (") - 67 (0)/k,)e®)) p(t)ar 2 0. (2.6)
o
v
Let the impulsive component of y(t) be given by z cj §(t - dj)
i=1
where the cj's are negative numbers and the dj's positive numbers.
Substituting this component into the second integral on the left of
-ad +ad

(2.6) and inserting an e 3 inside the integral and e i outside

gives
: T
v ad n 2a(t-d,)
I e I 1 e I (e - 4,) - o™ (t-d
o

n
5 3 j)/kz)cb (t)de.

(2.7)

With the piecewise continuous component of y(t), y'(t), substituted

into the same integral, the result is

T o

n
[ e ehm) [ vy (en) - oM (e /Ky e
o (o]

a(t=-Max ar . (2.8)

-ai
Interchanging the order of integration and inserting an e a inside
+
the integration with respect to t and e ak outside gives

T

o n
[ vy e [ PN (@Pen) - (e k) 6T (E)dr dae
[0} o

(2.9)

Appearing in both (2.7) and (2.9) 1is an integral of the form
T

n

[ 22N G e - ¢ (t-2)/k,) ¢"(t)dt where A > 0. This
o

intggral may be rewritten as
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Tn
f eZa(t—X) (C‘:(t -\) - ¢:(t = }\)/kz) ¢:(t)dt +
o]
Tn
[ 2B (e - gR(e - M) k)60 (£)de +
o}
Tn
U e2aEN) (e oy R - /Ry o5 (€)de +
[o]
Tn
S R O IR VIR G SV S T P LI (2.10)
[o]

The plus subscript indicates that the function possessing it is equal

to the non-subscripted function when the non-subscripted function is
positive and zero otherwise. An analogous definition applies to the

use of the negative subscript. For example, ¢E(t) = ¢n(t) for ¢n(t) <0
and ¢E(t) = 0 for ¢n(t) > 0. (2.10) is certainly less than or equal

to the first two integrals of this equation. Applying lemma 2 given

in the appendix of this chapter to these two integrals gives that

(2.10) is less than or equal to

T
" 2at, n n n
{ T (oh (1) - 0L () /ky) o (t) dt +
Tn Tn
[ e ®) - M0)/E) Rde = f 22N - $NO /KN Da.
° )

(2.11)
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Using the positive bound (2.11) in (2.7) and (2.8) gives as

a lower bound for the sum of these integrals
v ad d Tn
t n
€ ] cye Y4 [ ey (ded [e22%6" (1)-0" (1) /k Do (D)t .
j=1 0 o
(2.12)
Using (2.1) and (2.12) in (2.6) shows that (2.6) holds.

At this point the necessary time domain eelationships have
been obtained. The next step is to make use of Parseval's Theorem |,
in converting the time domain integrals into corresponding integrals
in the frequency domain.

Let c¢(t) and 6¢(t) be those components of o(t) and &(t),

respectively, due to the feedback signal -¢(t). Then

T T
" 2at en n " 2at n n
a [ e at(t)e™(t)dt + 2da [ €7 o (t)e (t)dt
o (o]
Tn
se [ TS +y(t) * [(0™(®) - ¢ (E) kDD ¢"(e)at =
o
T
m 2at . n n " 2at _n n
a [ e o (r)eT(t)dt + 2da [ e o, ()¢ (t)dt
o ¢ o ¢
Tn
to [ e (@ + y@®) * [0, (1) - " (D) /ke] T (Dar
(o]
Tn Tn
va [ B SRt mar + 2aa [ &P o M) (o)
o (o}
Tn
vo [ e s® +y@) * [oM(r) e ¢ (e)ar . (2.13)
4 |
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In the first three integrals on the right hand side of (2.13) 1let

* . . nk
c¢n(t) be replaced by o n (t) and c¢n(t) by o n (t) where

¢ ¢

o¢n*(t) = Fli-c(jw) F(o,"(£))]

and

5,7 () = F [-3a6(Jw) F(o,M(e))] .

In the first two integrals since the starred and unstarred quantities
are equal in (0, Tn) and since ¢n(t) is zero outside (O, Tn)’ this
change can be made without altering the values of these integrals.
For the third integral the identical reasoning plus §(t) + ¥(t)

being zero for t < 0 shows that the substitution can be made in

this case also without changing the value of the integral. A

second desired médification is to replace the O, Tn limits on all

6 of the integrals on the right hand side of (2.13) by -, =; once
again this 1s justified by the nature of ¢n(t). This reasoning also
allows the last substitution which is to be made in the third integral,
namely the replacement of ((§(t) + y(t)) * [oin(t)eat]) by

((o(t) + y(t)) * [oin(t) eaFDn. The second function is equal to the
first in (0, Tn) and zero elsewhere. With these changes (2.13)

becomas
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e 2at . n¥* n +e 2at n* n
d [ e 0, (£)67(t)dt + 2da [ e o, (B)e7(t)dt

-0 -00

PSS
te [ SN + y©) * 16,7 (1) - 4" @©) ke D" (nar

-—Q0

* 2ar - > Jat n
+a [ e o M) (r)dt + 2da [ e 3o Me)e N (e)ae
o0 ¢ n
+o [ e +y) * (0,0 ¢ (e)at . (2.14)

-0

Applying the Parseval Theorem to (2.14) amd using the fact that only
the real parts of the first three integrands give a non-zero contribution

to the values of these integrals gives

=00

-5 |  Re [d(jw - a) G(jw - a) + 2da G(juw - a)

+e 1+ YU (6w - a) + 1/k)] [Fe™()e*) | au
oo
+ %; {Q Flae®® 5, ()+ 2da e** o, "(e) +

+ c((8(t) + y(t)) * [oi“(t)eat])“] F(™(£)e?t) du . (2.15)

Using c, the first integral can be wewritten as

1 n, . at.,2 |
-5 [ Re H(jw) |F(¢ (t)e” )]|" dw (2.16)
and the second as
1 e on at
5= [ F(r) Fo () e ) do (2.17)
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where the p(t) is defined in the statement of the theorem. Using
the approach given in Aizerman and Gantmacher [13] an upper bound
that can be obtained for (2.15) with (2.16) and (2.17) substituted
into it is

P
8w

+o 2
/ LEeENIT o (2.18)

ReH(jw)

From the definition of P(juw), Q(jw), and m(t) given in the statement
of the theorem, an application of Parseval's theorem gives for

(2.18)

2 [ mi(ta . (2.19)
0

Using (2.5) on the left hand side of (2.13) together with the

bound on the right hand side of (2.13) given by (2.19) results

in
2aTn Tn 2at Tn 2at
de ¢(T ) + 2ad [ "% o(t)e(r)dt - 2ad [ e #(r)dt
(o} (o}
Tn
vef ) + y(0) * [(N(E) - 67 (6) /e W (t)de <
(o}

(1/4) [ mi(tddt + de(o). (2.20)
o] ) )

Since the sum of the second and third integrals is non-negative,
the desired bound

-2aT / mz(t)dt
o(T) ce 7 [+ 5(0)] (2.21)

folijows . Q.E.D.
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Theorem 2.2. Let all of the conditions of theorem 2.1 hold and in

addition let ¢(o) be an odd function. Then the assertion of theorem
2.1 holds with y(t) permitted to take on positive as well as

negative values.

Proof. The only difference in the proof as compared with that of

theorem 2.1 is that in place of (2.6) it is desired to show

T
f n e2at n

(@"(t) - 6" (£)/k,)6"(t) dt -
(o]

T
n

| ] ey * (™n) - ")kt 2 0 (2.22)
o

To show this, lemma 2 for the odd function case is applied to give

T

n
| | e2a(t-)\)(on(t - ) - 67 (t - k)/kz) ¢n(t)dt‘ hl
o

T
n

[ P ) - stk " (n)a. (2.23)
(o]

Using (2.23) in (2.7) and (2.8) gives

T

n )
| [ e®® (X * (") - " () /ky) E¥N T (B)de] <
o}

T
v ad ® n
[ 1 leyle Vou f e lyro]ae | 22T (e) - ¢™(E) /K" (D)dt .
j=1 o
(2.24)



(2.24) shows that (2.22) holds. The remainder of the proof of

the theorem is unchanged. Q.E.D.

A Simpler Bound From the Computational Standpoint

It is possible to modify (2.2) in order to obtain a simpler
form for computational purposes. As the bound stands, p(t) is
zero for t > Tn' This means that £w mz(t)dt has to be calculated
for each value of Tn. Rather than using the transform of this
truncated p(t) in the development, it is possible to use the
Fourier transform of the untruncated function directly independent
of Tn' While the original approach should give an improved result
for small values of Tn’ the latter approach definitely requires
less computational effort which is important in hand calculation.
Theorem 2.3. Let the conditions of either theorem 2.1 or theorem 2.2

hold. Then the assertions of these theorems hold with P(t) replaced
by

p(t) = eF[(c + 2ad) 5,(t) +d 0 (£)]) + c(o, (£)e™® * y(t)),

(2.25)

Proof. Referring to (2.14) it is seen that the change in the

definition of p(t) does not affect the value of the last three

integrals on the right hand side of this equation. Also, since

the new p(t) is Fourier transformable due to G(s) having poles

to the left of s = -a and due to (2.1) holding, itlfollows that the

remaining steps in the proof can be carried out without any alteration.

Q.E.D.
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Example 1. Let G(s) = G+ i)(s T 5y kz = 50, and ¢(o) be a

monotone nonlinearity. It is assumed that this system is excited

by a unit impulse input. The Popov criterion shows that this system
is asymptotically stable in the large. Since the Popov criterion

is applicable, it is reasonable to attempt to satisfy the real

part criterion with Y(jw) = 0. Since the pole of G(s) closest

to the origin is -1, a must be chosen less than 1. Let a be chosen
arbitrarily as .5. The real part criterion c is then.with ¢ = 1

(1 + .54 + diw)
Jut.5) (Jutb.5)

Re [( 1+ .02>0.

IF 4 is chosen such that the zero of the term im brackets is located
between the two poles, the real part of the first term will be non-
negative and c is satisfied. Setting d = 1 gives

(s + 1.5)
(s + .5)(s + 4.5)

H(s) = + .02

0(jw) obtained by factoring the reciprocal of the real part of H(jw) is

7.07(s + .5)(s + 4.5)
32 + 14.9s + 13.1

5t t

# - . - -
For a unit impulse input o (t) = .25e t e .25¢ " and o, (t) = -.25¢ " + 1.25e

Then p(t) = e'St(Zoi(t) + &i(t)) - .25e7 0% 4 7507408, / n?(t)dt
[o]

evaluated using Parseval's theorem and tables is 1.86. Substituting

this value into the bound expression gives #(t) < .465e—t.

5t
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In order to determine the closeness of this bound for a
particular case, let ¢(0) = 500. This choice gives ¢(g) = 2502.
Using the previously established bound results in|o(t)] < .1365e—'5t.
The actual response of the system with a unit impulse input is
.11&75e-3t sin 6.78t which has a maximum magnitude of .081 at t = .17

seconds.

C. Some Considerations in Using the Theorems

At first glance it might appear that the best bound would
be obtained by using the largest allowed value of a. However, as
the parameter a is increased, the value of the quantity multiplying
the exponential term in the bound expression will generally increase
since the minimum value of the real part of H(jw) will get smaller.
With bounds available for different a's, it is of course possible
to combine them to get an improved overall bound by taking the
smallest bound at a given time.

With regard to the allowed values for a, it has already been
stated in the theorem that a must be less than the magnitude of the real
part of the pole of G(jw) closest to the j axis. By considering the
linear case, it is also seen that a must lie to the right of that
portion of the root locus of the system corresponding to the gain

in the sector (0, k2).
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Once a has been chosen, it is necessary to check the real
part criterion to determine whether it is satisfied. Presumably,
the asymptotic stability of the system will have been demonstrated
so that a candidate for a Y(s) function is available as well as a
value of d/c. It is to be noted that the satisfaction of the real
part condition only depends upon d/c but that the value of the
bound obtained depends upon both these parameters. If the real
part condition is not satisfied for this choice for all w, the
parameters can be altered and a new value of Y(jw) selected. The
required changes in the parameters and Y(jw) should be evident
from the first try.

-]

It must always be made certain that f eat | y(t)!dt < 1.

A point to note is that the larger tﬁe value of a, the more
difficult it is to satisfy the criterion since ad G(jw - a) has a
larger coefficient and since the area associated with y(t) becomes
less, implying that the maximum phase angle that can be obtained
from 1 + Y(jw) 1s less than 90°:

Using a computer'it is possible to obtain an optimum value
for the parameters ¢ and d and for Y(jw) by selecting these
quantities to minimize the function of time or number multiplying
the exponential term in the bound expression. With hand calculation

techniques one would have to be satisfied with a few different

trials for these quantities.
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D. Case of x(t) # 0

If in order to show stability a multiplier is required
which has z(t) = F_l(z(jw)) non-zero for t < 0, the bounding
inequality becomes more complicated in that the value of
]¢n(t)l max, the maximum value of|¢n(t)| in the interval (0, Tn)’

must be used. This result is presented in the next theorem.

Theorem 2.4. For the system of figure 1 excited by initial conditions

let a and b of theorem 2.1 hold and let

¢ Re H(jw) = Re[c(l + X(Ju) + Y(Jw))(G(Juw - a) + 1/k2)
+ djwG(Jw - a) + ad G(Jw - a)] >b >0 (2.26)

where b, ¢, and d are positive numbers, x(t) and y(t) are composed of
delayed impulses and a plecewise continuous function that satisfy

x(t) = 0 for t >0, y(t) = 0 for t < 0, x(t) < 0 for t < 0, y(t) <0
for t > 0. The magnitude of the piecewise continuous component of x(t)
is assumed to be less than 2 exp (ft) where & and f are positive

numbers and

1
f e |x(t) + y(t)|dt < 1. (2.27)
Then © 2
—paT [ m(t)de ,
n 0 n
o(T ) < e [ 73 + 6(0) + n('rn)|¢ ()| max)

where m(t) = F-l [P(jw) Q(jw)] with
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p(t) = 2% [(ec + 2ad)oin(t) +do (0] +

¢ [o,M(e) €™ % (x(t) + y(e)1”

and Q(jw) is defined by 1/Re H(jw) = Q(jw) Q(-juw).

T
n

M(Tn) =c [
o —co t—k--Tn

t t-A
2t [ 2N T hey | Ix(A) |dednat.

where g(t) = F L (G(ju)).

Proof: The proof is identical with the proof of theorem 2.1 until

(2.6) isreached. 1In place of (2.6) it is to be shown that

T
n

[ PN - 0k eh(D)dt +
o]

T
n

[ e@fxe) * (" (1) - 67(t)/k)eT] T (e)dt +
o]

T
n

[ 2% [y(r) *((c" () - ¢n(t)/k2)eat)] o7 (t)dt > 0 . (2.28)
[

u
Let x(t) = z ay §(t + bi) + x'(t) where x'(t) is the
i=1
plecewise continuous component of x(t). Substituting the impulsive

component of x(t) in the second integral above gives

T
u ab n
age © [ P ON(E b - 6hE + b /k,) $N(e)ar
i=1 o

(2.29)
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and substituting the plecewise continuous component x'(t) into

this same integral gives with a change in the order of integration

T
) n
[ ox' ) e [ e®B 0 oy - 60 - M) /K, 167 (6)dt dh.
-0 [e]
T ' (2.30)
n
Writing out f ezat [(?(t—\) - ¢n(t-x)/k2] ¢n(t)dt as in
o
(2.10) gives that this integral is less than or equal to
T
[P e (Pt - a) - o™t - A)/k.) 6P(t)de +
o ¢ %% P+ p) ¢, (B)dt
Tn
[ e® e - 2) - "t - M/ky) ot (e)de . (2.31)
o

Applying lemma 2 for X\ < 0 then gives that

T

n 2at n n
[ €™ o - 0 - 6" - /K] o™ (et <
[o]

T
n

[ e® () - o™ () /K] $"(v)at . ' (2.32)
. 2

A lower bound on the second and third integrals of (2.28) is then

(2.32) times

u ab v ad +e
[ ] ae b+ ] cie v [ (x'® Ly (et
1=1 j=1 —oo

which shows that (2.28) holds.
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Next, let the term

T
n

e [ & xe) * (1) - (/K™ $M(t)a
o

be added to (2.13) and let the substitution be made as before.
A modification is required in the replacement of o¢n(t) by
o¢n*(t) for the added integral on the right hand side of (2.13).
For this integral it is necessary to take into account the
difference between these two functions due to x(t)'s being
non-zero for t < 0. Leto¢n*(t) = o¢n(t) + o¢d(t). Substituting
for o&n(t) according to this expression then gives the following
two integrals to be added to (2.14)
40
e [ e % 1M (e) - 0"(6)/k,)e™]) ¢" (o)t

-00

te at d at n
e [ e (x(t) * (o, (t)e"0)) ¢ (t)de . (2.33)

An added term involving the initial conditiom expression is

400
e [ € tx(e) * 0 ")) ¢ (D)ar . (2.34)

As in the proof of the corresponding stability theorem, the magnitude
of the integral involving o¢d(t) can be bounded in terms of |¢n(t)|max.
Using the definition of |¢n(t)|max and taking absolute magnitudes

gives
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400
¢ [ f(x(t) * <o¢d(t> e2ty) o™ (t)dt <

-—00

T

) n t _ t-A
e 1071 L o 5 S [ e | Ixh) [deare
o E=A~T
n
= M(T ) ERCIE (2.35)

Repeating the steps in (2.15) through (2.19) then gives for (2.20)

T T
2aTn T 2at ™ 2at
de ®(T )+ 2ad [ e o(r)e(t)dt - 2ad [ e e(t)de
(o] (o]
Tn
Fo [ e (e +x() + y(0) * L") - o"(E)/keD) o (D)at
(o)
< X mmz(t)dt + d8(0) + M(T) |6%) ]2 . (2.36)
- 4 o n max .

Then (2.21) becomes
= 2
—2aT [ m“(t)dt
0

M(T.)
_q’('rn)ie o I

n, 2
Tolet e |7 1. (2.3D)

7 + ¢(0) +

Q.E.D.

Theorem 2.4 can be applied in the case where ¢(o) is an
odd monotone function with x(t) and y(t) being less restricted.
The proof is similar to that of theorem 2.1 so it will not be repeated
here.
Theorem 2.5. Let all of the conditions of theorem 2.4 hold and in
addition let ¢(o) be an odd function. Then the assertion of theorem 2.4
holds with x(t) and y(t) permitted to take on positive as well as

negative values
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Although M(Tn) is independent of system excitation as
developed in the proof of the theorem, this is not the case for
|¢n(t)lmax. A value must be obtained for this quantity before
the bound can be applied. The simplest way to find this
quantity is by using theorems 2.4 or 2.5 with a = 0. Tn is
chosen as that value of time at which |¢n(t)|max occurs. Then
by using the fact that @(Tn) approaches infinity more rapidly
than |¢(o)|2, a bound can be obtained on |¢| by finding the
value of this variable above which the bounding inequality does

not hold.

E. A Different Bound

The bound (2.2) given by theorem 2.1 as well as the
other bounds obtained thus far depend upon the square of the
initial condition excitation. As long as 4(c) is in its linear
range, a reasonable bound is obtained for o. To see this, let
o(o) = c102 where cq is a positive number. In the calculation
of the bound for o a square root must be taken and ¢ is then
effectively bounded by a linear function o€ the initial conditions.
On the other hand if ¢(c) is in a saturation region,$(c) = c2|o| + cq,
resulting in the bound depending upon the square of the initial
conditions. To try to get a better estimate in this saturation
case, the approach employed by Lefschetztll]will be used rather than
the "completing the square" approach given in Aizerman and Gantmacher [13)

that has been utilized thus far. The Lefschetz approach yields a
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bound dependent upon the magnitude of the initial conditionms.

Theorem 2.6 Let all of the conditions of either theorems 2.1 or

2.2 hold. Then another bound on ¢(Tn) is

n
-2aT l¢ (t)l

max f |p(t)|dt
®o(T) e Y °

3 + 3(0)] (2.38)

where

p(t) = e23%[(c + 2ad) cin(t) +d 51“(:)] +c eat[oin(t)eat * (y(e))]®

(2.39)

- - . . I 4 \ P S — A
Froof. The proof is unchanged until (2.15) is reached. At thi

n

point, since (2.16) is negative, it can be dropped and the second
integral (2.17) retained. Then, the left hand side of (2.20) is less
than or equal to the magnitude of (2.17) written in time domain form
which is

40

¢ [ T +ye) * [0,7©e* D" ¢"()de +

-~00

P +oo
d [ e 5. "r) ¢™(trat + 2da |

-0 00

22t o, "(t) $"(t)dt.  (2.40)

The magnitude of this integral is less than or equal to

+o0

lo" () | lp(t)|dt . (2.41)

max {co

where p(t) is defined above. With the exception of the use of the

new bound, the remainder of the proof is unchanged. Q.E.D.
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In a similar way theorems 2.4 and 2.5 can be restated using
this new bound. The modification in the proof is identical to that
given for theorem 2.6.

Theorem 2.7. Let all of the conditions of either theorems 2.4 or
2.5 hold. Then another bound on @(Tn) is

o0

-2aT_ |¢™(t)|___ [ |p(t)]dt ™M(T.)
n max n n 2
®(T ) <e { : g ]+ ()]
(2.42)
where
p(t) = 3% [(c + 2ad) oMty + d 5 ()] +
¢ e® o ") * (x(t) + y(£))]" (2.43)

and M(Tn) is defined in the statement of theorem 2.4.

Example 2. Consider the same problem as that of example 1 and let
the nonlinear characteristic be a saturation function defined by
$(0) = 500 for 0 < |o| < .02k and ¢(o) = Tk for 02K < |o] < w
with the + sign applying for positive values of ¢ and the - sign

for negative values. Using (2.39) and the previously computed values

of o,(t) and o (t) gives p(t) = .25 + .75e_4t. The bound 1is then
i 1 ~5T -T
n n n n
o(T)) <K (.25T_ e - .1875e + .1875e ) with [¢ ()] 0y = Ko
The bounds for o are then
—Tn -STn -T
lo] < .25 T e " - .1875e + .1875¢ " + .01K,|a| > .02K
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2 -T —5Tn -Tn
0" < (04K(.25T e " - .1875e +.1875¢ ™) |o| < .02k .

Plots of this bound (called the L bound) and of the bound computed in
example 1 (called the AG bound) are plotted in figures 7-10 for
various values of the saturation level K. The smaller the value
of K, the better the results of the L bound as compared with the

AG bound.

F. A Response Bound With an External Input Applied

The introduction of the eat multiplier for ¢(Tn) allows a
bound to be obtained for the response of the system with certain
external inputs applied. Theoretically, it is only necessary
to make certain that the input is such that piecewise continuity
and Fourier transformability are guaranteed for certain pertinent
functions. From the practical standpoint some difficulty may be
encountered in finding a bound for |¢)n(t)|max in theorems 2.4, 2.5,

-3

2.6, and 2.7. If [ |p(t)|dt is bounded for a = 0, a bound can be
computed as discussed previously; if this integral is not bounded,
it is necessary to calculate a time varying bound for |¢n(t)|2max
using the theorems with a = 0 and choosing |¢n(t)|2max as occurring
at t = T .as the worst case. Since |¢n(t)| does not appear in
n max
theorems 2.1 and 2.2, these theorems can be applied with no change
in the computation procedure. Examples of possible inputs include

a sinusoidal function, a ramp function and an exponential function.

This discussion is summarized in the following theorem.
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Figure 7. Bound on 0 for the saturation level k = 0.
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Figure 8. Bounds on ¢ for the saturation level k = 1.
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Figure 10. Bounds on o for the saturation level k = = (linear case).
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Theorem 2.8. Let the conditions of either theorem 2.1, 2.2, 2.4,
2.5, 2.6, or 2.7 hold. If the input to the system is such that
on(t), &n(t), ¢n(t), crn(t), and érn(t) are Fourier transformable,
the assertions of these theorems hold with oin(t) and éin(t) replaced
by oin(t) + orn(t) and &in(t) + 6rn(t) respectively. orn(t) and
érn(t) are equal to those components of o(t) and &(t), respectively,
due to the direct action of the input (the input acting through G(s))
in (O, Tn) and zero outside this interval.

Example 3. Let G(s) = 1/(s + 1), k2 = 10, the nonlinearity be monotone,
and the excitation be an input of ein t with the initial conditions
zero., This G(s) is sufficiently simple that theorem 1 can be

applied with y(t) = 0.

Re (c + ad + djw)
jw-a+1

Re H(jw) = + .1.

Set a= .25, c =1, and d = 2. This then gives ReH(juw) = 2.1.
-t -t

o_(t) = .5¢"" + .707 cos(t - 135%), &r(c) = -.5e " - .707 sin(t - 135°),

and p(t) = 2e'25t sin t. Using these quantities then gives as the

bound

-.5T
®(T_) < .238 - .014 cos 2T - .0561 sin 2T =~ .2235e  ° < .2959.

For the special case ¢(0) = 10o, using the above bound gives o(Tn) < .243.

i

The actual response is o(t) = .0082e "+ .0905 cos(t - 95.20).
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Example 4. Let the system be the same as in example 3 but let

the input be a unit ramp rather than a sinusoidal input. cr(t) = t-lte

t .25t

ér(t) =1-e -, p(t) = 2e L. Using these values gives

"oST

2 n

(T ) < 1.91(.25 T_° - T_+ 2) - 3.82e

from which it is seen that the bound approached for large Tn is
4775 Tnz. With ¢(c) = 100, this gives as a bound for large Tn
lo| < .309 Tn' The actual response for large values of Tn is

g = .0909 Tn' ’

For both of these examples by referring to [6] - [9] and
treating the inputs as being zefo outside (O, Tn), it can be
shown that the conditions of the theorem are satisfied.

As was pointed‘out in the introduction, the application of
this theorem can show Liapunov stability with certain inputs

applied. The case of example 3 with the sinusoidal input applied

illustrates this point.

G. Modification For the Case of Poles to The

Left of the Line s = -a

In the case of a system in which a lag compensator has been
incorporated in order to increase the gain of the system at low
frequencies, the significant portions of the response are usually
characterized by one time constant while another time constant due
to the lag compensator characterizes the response for large values

of time. In the theorems discussed thus far, it has been assumed

t
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that a is less than the magnitude of the real part of the pole
closest to the origin. Therefore, these theorems would only

be able to yield a bound that would be realistic for large t.

The theorem below allows the calculation of a bound that should
give geod results for the significant portions of the response

of these systems. The approach used is basically one in which the
given G(s) is replaced by another transfer function equal to g(t)
in (O, Tn) but different from g(t) outside this interval. This
modification allows the original theorems to be applied to give

a bound valid in ihe time interval {0, Tn).

Theorem 2.9. Let

n ay
G(s) = Gl(s) + izl p_— bi
n cy
s G(s) = GZ(S) + izl ;—:jji;-

where a > bi but less than the magnitudes of the real parts of the
poles of Gl(s) and GZ(S)° Then 1if conditions a and b are satisfied

and the modified c given below is also satisfied

Re H(jw) = Re[e(l + Y(Jw) + X(Jw)) (G,(Juw - a) + 1/k,)
+ d GB(jw - a) + 2ad GA(jw -a)] >8>0

where X(jw) may be zero, and
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(a-b)T ~ ~IeT,

n ai[l -e e ]
G,(Ju - a) = 6, (Ju - a) + 121 Ju = a ¥,
(a-b, )T —JuT
n Ci[l - e 'm g n]
GB(jw - a) = G,(Ju - a) + i£1 jo - & + b,

the assertions of theorems 2.1, 2.2, and 2.6 hold without any

changes and the assertions of theorems 2.4, 2.5, and 2.7 hold

with the g(e) used in the definition of M(Tn) replaced by

g, (e) = F 1[G, (Jw)].

Proof. The only change required in the proof of the theorems is in
the step just before the application of Parseval's theorem by which
the time domain integrals are converted to frequency domain integrals.
o, ™ (t) and 6 " (t) are redefined as o," (t) =-F 1[G, (ju) F(4"(£))]

¢ ¢ ¢
« n*

and o¢ (t) =-F_1[GB(jm) F(¢n(t))]. If x(t) = 0, these changes

do not alter the values of the integrals in which they appear since

-these two time functions are equal to o(t) and o(t), respectively,

in (O, Tn). For x(t) # 0, the substitutions result in a different

value for o¢d(t) but the same steps in the proof are applicable with

g(e) being replaced by gA(e) in the definition of M(Tn). The reason

*
for the changes is that with the original definitions, o n (t) and

¢
+ n* at

0¢ (t) when multiplied by e =~ were not Fourier transformable. The
new definitions result in Fourier transformable functions when
multiplied by the exponential. The other steps in the proof are

unchanged.
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Example 5. Let G(s) = -1.005/(s + 2) + 1/(s + 1) + .005/(s + .1)

for a system with a monotone nonlinearity and a gain k., = 10. Then

2
s G(s) = 2.010/(s + 2) - 1/(s + 1) = .0005/(s + .1). Let a = .5=

This GA(s) is sufficiently simple that theorem 2.1 can be applied

with Y(s) = 0, c = 1, and d = 1. The real part criterion is then

Re [2 GA(jw - a) + GB(jw -a)+ .1] =

+4T -jwT
1/(Gw+ .5) + .0095(1-e "e ™/Quw- .4) + .1.

The maximum magnitude of the second term om ilie vight hand cide
is .053. Therefore, Re H(jw) > .047. For convenience in the

calculation of the lower bound, this number will be used rather

than the actual function of frequency. p(t) = e'St

=5t +.4t
e + .0095e for an impulse input. The bound is then

-T_ -.2T 2T -1.1T
(T ) <5.32[1.19e " + .000113 e -e "-.19e ™

T

for Tn < .5. For Tn > .5, the bound given by the original theorems

can be used with a < .1.

H. A Result for the Linear Case

If ¢(0) is a linear function or a nonlinear function in its
linear range, it is possible to get an improved result for the
frequency domain condition c. To see this, let ¢(o) = Ko where

0 <K <o, Then (2.4) can be replaced by

n

[20 %(e) + 0, ()] =
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T T
n

2at n
a [ e o(t) ¢(t)dt - 2a f
o o

e28% o(t)dt > 0

since o(t)¢(t) = Koz(t) and ¢(t) = Koz(t)/z. Also, for the

linear case

T
n
[ e N (Pean) - ¢ (N 1) e" (D)d =
(o]
Tn
R - K/ky) [ 2 00)e® 0™ (enyae <
(o]
Tn Tn
KL - Kk [ 2P ear + [ 22T MoP2e - a)de] <
(o] (o]
Tn Tn
K(1 - K/ky) [ 23 (yae = [ 2™ (D) - o"(D)/k,) $"(D)dt
o] e}

which means that the integral magnitude condition can be relaxed.
Combining these two results gives for the frequency domain

condition c

Re H(jw) =
Re[(} + djw + Y(Juw) + X(Jw)) (G(jw - a) + 1/k2)] >8>0

where !+“ (|x(t)| + ly(t)hde < 1.

Be;:use of this improved conditdon, it is possible to choose
larger values of the parameter a for the linear case than for the
nonlinear case. This suggests the following approach. When ]a(t)l

is such that the system is im itis nonlinear region, one of the

bounds already discussed can be claculated. When according to
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this bound the system is in and remains in the linear region for
all succeeding values of t, say t Z_Tl, an improved bound is
calculated using the real part criterion given above. In
applying the theorem this second time, a value is immediately
available for Q(Tl). However, since oi(t) and &i(t) are not
known for this second application of the theorem, bounds for
these two quantities must be calculated using the bound on

¢(c) determined in the first application of the theorem.

I. Conc¢lusion

This chapter has presented a number of different results for
bounds on the response of the single nonlinearity time invariant
system. The usefulness of these bounds appears to be in two
applications. First, it is possible to develop an approach for
carrying out an analytical design for a nonlinear system. If the
system is excited by initial conditions or by an impulse or step
input which can be converted to equivalent initial condition

inputs, the theorems given can be used to calculate a bound on

|o(t)|. Since the desired equilibrium state for the excitation

under discussion is the origin, it is possible to obtain a satisfactory

design for the response time of the system by adjusting the parameters

of the system or by adding a compensator such that the bound on
the system output meets the system specifications. Secondly, if a
bounded time varying input 1is applied to the system, it is possible

to show Liapunov stability by applying the bounding theorems,
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Therefore, the bounding theorems give sufficient conditions for
Liapunov stability with a bounded input applied, provided that
no common factors of G(8) in the right half s plane or on the

jw axis have been cancelled.
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J. Appendix

Lemma 1. Let fa(t) and fb(t) be two continuous functions of t

that are zero outside the interval (0, nAt) where n is a positive
integer and At is a positive number, fa(t) fb(t) > 0, fa(t) = h(fb(t))
where h is a pilecewilse continuous monotone increasing function of

its argument, then 1if either both fa(t) and fb(t) are always non-

positive, or non-negative or if h is an odd function with h(0) = 0,

n n
kzo |£_Ckat) £, (kat - 2)| < kZo £, (kAt) £ (kAt)

where A is a real number such that |A|/At is an integer.
Proof. The proof of this lemma follows from the proof of the
lemma given at the end of chapter 1 in which this result is

obtained as an intermediate step.
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Lemma 2. Let fa(t) and fb(t) be two continuous functions of time
that are zero outside the interval (O, Tn) where Tn is a positive
number, fa(t) fb(t) > 0, fa(t) = h(fb(t)) where h is a piecewise
continuous monotone increasing function of its argument, then if
either both fa(t) and fb(t) are always non-positive or non-negative
or if h is an odd function with h(0) = 0,

T T

n n
| PN e (o (enae] < [ €22 £ (0)F, (B)de, A > 0

(o} o

T T
n
e?8t £ ()f. (e-N)dt| < e22t £ (t)f. (t)dt, A < O.
o a b o a b

Proof. Let At be chosen such that [A|/At is a positive integer and n
is the largest integer less than or equal to Tn/At. It is assumed that
Al < Tn for if |A|.l Tn’ the assertion of the lemma follows at once.

With A >0, let the two summations

n
k£0 |£, (kat) £, (kat - M| e

2a(kat - X) At (A1)

and

n
kZo fa(kAt) fb(kAt)e

2a(kAt) At (A2)

be formed. (Al) divided by At may be rewritten as




&n

[|fa(x) fb(0)| + lfa(A+At) fb(At)|+ |fa(A+ 2At) fb(ZAt)| + ...

+ |fa(Tn-At) £, (T - A-at) | + £, (T) £, (T_-)) ]

2aAt
e

+ ( - 1) [Ifa(A+At) fb(At)| + |fa(x+ 2At) fb(ZAt)l + ...

Ifa((n-l)At) £, ((n-1)at - M|+ |£ (nt) fb(nAt—A)I]

baAt 2ait
e - e

+ ( )[|fa(x+ 20t) fb(ZAt)I + Ifa(A+3At) fb(3At)| + ..

lfa((n—l)At) £, ((n=1)At-2)| + | £, (nat) fb(nAt—A)l]

+ ...

e2a()\—At) _

+ ( c2a(A-28t), (£, ((a-1)a8) £ ((a-1)at-2)| +

|fa(nAt) fb(nAt-X)|]

2al

+ (22 - 220780y g (mae) £, (mae-n) |, (A3)

Similarly, (A2) divided by At may be rewritten as

[fa(O) fb(O) + fa(At) fb(At) + fa(ZAt) fb(ZAt) + ...

+ fa((n-l)At) fb((n-l)At) + fa(nAt) fb(nAt)]

+ (e280t _ 1) [£,_(at) £, (at) + £_(28t) £, (28t) + ... + £ _(nat) £, (nat)]
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baAt 2aht
e - e

+ ( ) [fa(ZAt) fb(ZAt) + fa(BAt) fb(3At) + ... fa(nAt) fb(nAt)]

+ ...

+ (eZaX_ eza(A-At))[fa(A)fb(A) + fa(A-{-At)fb()\'l-At) + .. fa(nAt) fb(nAt)]

+ (eZanAt _ e2a(n-1)At

) If,(ndt) £, (nat)] . (A4)
Comparing the terms in (A3) and (A4) having the same exponential multiplier
and using lemma 1 on the terms of (A3), it follows that (A3) is less than
or equal to (A4). Since
T
n

n 2a(t-))
| o[ £(t) £,(t-)) e at - kzo £, (kat) £, (kat-))atl

< e(At)

where e€(At) is a positive number whose value depends upon At, taking the

limit as At »> 0 gives
Tn Tn
| [ £.(t) £ (t=)) eza(t—x)dt| < [ £.(t) £ (t) o28t 4.
o a b o a b

which 1s one half of the lemma.

With A < 0 the summation

n
kzo | £, (kot) £, (kat-2)

|23KAL . (AS)
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is formed and rewritten as

[|fa(0) fb(-x)| + lfa(At) fb(At-A)| + lfa(ZAt) fb(ZAt-A)l + ...

£, (nat+r) £ (nat)]]

2ait
e

+ ( - l)[Ifa(At) fb(At—A)[ + Ifa(ZAt) fb(2At—A)| + ...

Ifa(nAa+A) fb(nAt)|]

LaAt 2aAt
e - e

+ ( ) [Ifa(ZAt) fb(ZAt—A)| + |fa(3At) fb(3At—A)| + ...

Ifa(nAtﬂ) £, (ndt) 11

+.‘l

(eZa(nAt+A) _ e2a((n-—

N 1)at+h), [|€, (o) £, (nae) |1 . (46)

Repeating the foregoing reasoning with (A6) replacing (A3) gives

T T
n

2at _ n 2at
| oj' e™" £ _(t) £ (e-N)de| j_of e™®t f£_(t) £, (v)dt .

Q.E.D.
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V CHAPTER III. SYSTEM WITH A TIME VARYING

NONLINEARITY, SAMPLED DATA SYSTEMS
AND SYSTEMS WITH MULTIPLE NONLINEARITIES

A. Time Varying Nonlinearity

The theorem given below is a modification of theorem 1.2 with
the modification added to take into account the an o(t)e(t)dt term
no longer being an exact integral. There are a gumber of ways in
which this could be done; the approach used has the merit that it is
not necessary to take into account the rate at which the nonlinearity
changes with time., Therefore, this theorem appears to be the most
generally applicable one that could be developed.

Pertinent references include ihe works by Sandberg [12] and
Rekasius and Rowland [19]. The criteria which are developed in these

references do not include anything as general as the Z(s) multiplier

used in theorem 3.1.

Theorem 3.1. For the system of figure 1 with ¢ being a time varying

nonlinearity let the following conditions hold:

a. A ém(o)c.i ¢(o,t)o < B ¢m(o)o where A and B are real numbers

satisfying 0 < A <1l and 1l <B < =, ¢(0,t) = ¢m(0) =0, 0 ¢(o,t) < k 02
where k > 0 and o ¢m(o) > 0 for 0 # 0, d¢(o,t)/do is a continuous

function of o, ¢m(c) is a continuous monotone increasing function

of o having an odd part ¢_ (o) that satisfies |¢ _(o)! < ¢c|o (o)
mo m s mo

and |¢mo(o)| < Dl¢m(c) .
b. Conditions b and c¢ of theorem 1.1.
Then a sufficient condition for asymptotic stability in the 1arge

is that

RelZ(jw) G(jw) + ECCUIw) + 1/K) - a5D) (i +uD) JeGw|*1 2 6 > 0 (3.1)
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for all real w where E is a non-negative number,$ is a
positive number, and
Z2(jw) = 1+ ajw + X(Juw) + Y (ju) (3.2)

and

oo
B @y tenae+ Jat+ ] e’ -

-0

40
[ ] '@ +y @eNde+Ja +Jec 1<1 (3.3)

- 00

> |3

+ + + +
where x' (t), y' (t), a; and c, are the positive portions or
values of the corresponding non-superscripted functions or numbers

and x' (t), y' (t), a, , and c, are the negative portions or

i
values of the corresponding non-superscripted functions or

numbers. The magnitude of the piecewise continuous component

of x(t) is assumed to be less than % exp(ft) where £ and f

are positive numbers.

Proof. The proof is ident%cal with the proof of theorem 1.2 except
for the handling of the [ i o(t) ¢(t)dt term. Because of

)
condition a of the theorem, it is possible to express ¢(o,t) as

¢ (o,t) = A¢m(c) + ¢2(0,t) (3.4)

where

6,00, 00| < B-8) [ ()] < ZR Jo(o,0)] (3.5)
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Using this result, it is desired to show that
T T
. B=A | (2 2 2
f o(t)é,(0,t)dt + 7= [ [o“(t) + k" o (t)1dt > O, (3.6)
o - 0
Since
. B— L]
l5(t) 8,(0,0) | < 22150 koo
< 20 12+ o)), (3.7)

(3.6) holds. (1.43) in the proof of theorem 1.2 is replaced by
T T

n n
[ (60) + x(t) + y(©)) *o™(£)) ¢"(t)at + an [ o"(t) ¢ “(D)de
(o] ' o

T T
n n
ta [ & (Dey(o,00dt + 50 el (P (e) 1% + K2 o) 1%)ae
o]
T

n
+E [ (a"(t) - ¢"()/Kk) ¢"(t)dt =
0

T T

n n
[ ((8(e) + x(t) + y(r)) * o¢“(c>) ot (t)dt + a [ &¢“(t) o" (t)dt
(o] (e}

T T
n - n
+ .5 LEAL [o¢n(t)]2dt + slBh) 42 [c¢n(t)]2dt
(o] o]
Tn
+E [ (0,70 = () /k) ¢7(r)de +
T ° T
n n n n*n n
[ ((8(t) + x(8) + y(£)) *o.7(£)) ¢ (t)dt + o [ o, (r) ¢ (t)de
[o]

o
T T T

: n, . _ n n,
+ SR 175 ey 6,7 (e)ae + %Z'A)' K ot (B0, (e)de + E [ 6, (e)0" (t)ae
o o °

T T
n . _ 2 n
+ .SaAgB—A) J c’j.n(t)]Zdt + ;EEL%ALk f [o'i‘(t)]zdt . (3.8)
o

(o}
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Before applying Parseval's theorem to the integrals on the right

hand side of equation (3.8), the 0¢n(t) and 3¢n(t) terms must

* . *
be replaced bv ¢ n (t) and o n (t), respectively and the upper

¢ ¢
limits on the integrals changed to ». The only new step

T T
required is by the [ " b¢n(t)]2dt and fn[o¢n(t)]2dt terms.
o (o]

*
d . o (t) - o n(t) where

e d _ + n% s
Let o¢ (t) = o¢ (t) o¢ (t) and o¢ 6 6

. . *
o¢d(t) is that component of o n (t) outside (O,Tn) and o¢d(t) is

)
that component of 0¢n?t) outside (O,Tn). Then

f [&¢“<u)12 it = | [é¢n*(t)]2dt . [5¢d(t)]2dt (3.9)
o] [o} (o]
and
f [o¢n(t)]2dt -/ [c¢n*(t)]2dt - [o¢d(t)]2dt : (3.10)
0 [o} (o]

Using the convolution theorem together with straightforward

bounding techniques gives

- -]

t -1 2
[ U] |F (Que(ie))|drlat
T -T

[ 6@ < o2
0

max

(3.11)

and
oo o t
, 4 2 n 2 -1 2
% I OO LE R A O] iy S o SRR L CC DI LS LS
T t-T
n n
With (3.9) and (3.10) used on the modified right hand side of

(3.8), the Aizerman and Gantmacher completing the square approach

(3.12)
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together with condition (3.1) gives a bound on all of the integrals

on the modified right hand side except for

S x(t) * 0¢d(t)]¢n(t)dt + -'-5—‘-’-§B—“‘-“l { [5¢d(t)]2dt +
(o]

T

_ ® 2 - n.
=2 (B-A) 2A K2 f [o¢d(t2dt+ ——L——l‘s"iA / [cin(t)]zdt+
[ o
Tn
2elB8) 1 Py )Zae (3.13)
(o]
Using the result obtained for the first integral of (3.13) in
Chapter I together with (3.11) and (3.12) gives that the left
hand side of (3.8) is less than or equal to
M+ [eRe) % M (3.14)
1 max 2 ’

where M1 and M2 are positive numbers independent of Tn' Using
(3.6) and (3.7) gives

T
n

[ ((8(e) + x(£) + y(£)) * o"(£)) "(t)dt + aa & (t)
o]

<A e (0) + My + [6°(t) lzmax M, (3.15)

o(t)
where ¢m(t) = f ¢m(o)do. The above inequality shows that o(t) is
o T

n
bounded and that [ o(t)¢(t)dt is also bounded, thereby demonstrating
(o]

asymptotic stability in the large. Q.E.D.
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Example 3.1. Let G(s) = {s +.000L)(s + '25). The preblem is

(s + .1)(s + 1)

to find the characteristics of the time varying nonlinearity

that is permitted if the system is to be asymptotically stable

in the large. G(jw) has a leading phase angle outside the t90°

band at low frequencies and a lagging angle outside this band

at high frequencies. A convenient choice for Z(s) is (-s+.05)(s+1)/(~s+.1).
Z(s) G(s) is then (-s’ + .0025)(s + .0001)/(~s> + .01)(s + 1)2, the

real part of which is non-negative for all w. Also, since

Z(s) = s + 1.05 - .055/(-s + .1), both x(t) and y(t) are

+oo
non-positive and f (]x(t)| + |y(t)]|)dt = .524. Therefore, from

(3.3) it follows t;at B/A < 1.91. Next k is determined by
working with (3.1) with E = 0. The largest allowed value is
k = 2.16 . Therefore, any continuous time varying nonlinearity
with a monotone bounding function ¢m(o) such that the B/A inequality
is satisfied and having a linear bound with a slope less than
2.10 is permitted. An example of an allowed function is
¢(o,t) = po(l + q cos wot)/(l + |o|), where 0 < p < 1.6 and
0 < q < .312, For this case ¢m(o) = pa/(1 + |o]).
The next theorem gives a bound on the response for ¢

being a time varying nonlinearity.

'
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Theorem 3.2. For the system of figure 1 excited by initial

conditions let a and b of theorem 3.1 hold and let

c. Re H(jw) = Rele(l + djw + X(jw) + Y(Juw)) G(jw - a)

+ E(G(jw - a) + 1/k) + da G(Ju - a) +

a LA 2 4 224wy JeGe - 2|1 28> 0 (3.16)

for all real w where a is a positive number whose magnitude is less
than the magnitude of the real part of the pole of G(s) closest to
the jw axis and ¢, d and E are positive numbers. x(t) and y(t) are
composed of delayed impulses and a piecewise continuous function
that satisfies x(t)=0 for t > 0, y(t) = 0 for t < 0 and x(t) < O for
t <0 and y(t) < 0 for t > 0. The magnitude of the piecewise
continuous component of x(t) is assumed to be less than %

exp(ft) where 2 and f are positive numbers and

e -alt]
[ eIt k() + y(r) |de < 1. (3.17)
= 2
-2aT_ oj m(t)de M(T ) l¢n(t)|2mx
Then, ¢m(Tn) <e [ %dA + om(O) + A ———
R(Tn)
dA ] (3.18)
o(Tn)
where ¢m(Tn) = f ¢m(o)do and m(t) = F-l[P(jw) Q(jw)] with

[o]
p(t) = &% [(c + 2ad + E) o,"(1) + d 6, ()] + ¢ [ain(t)eat * (x(t) +

h B-
O e TR P I
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Q(jw) is defined by 1/Re H(ju) = Q(jw) Q(-jw),

T

n t t-A
M(T) =c [ e2t / e2(tA) / |g(e)||x(X) |de dr dt
n
o -~ t-A-Tn

® t
4 224B4) 23t IF1(ju cGw)| ar)lde +

o t
. 5d (B=A) / o2at [/ |F‘1(c(jw)|dx]2dt, and

T t-T
n n

T
n

R(r ) = +29BA) f 7280 (15 B )12 4 (5, P(0)) e,
(o}

Proof. The proof of this theorem is similar to that of theorems

1,2, 2.4, and 3.1. A modification required for this case occurs
T
n 2at -
for the f e o(t) ¢(o,t)dt term. It may be rewritten as
o

T T
n

f 2at - n
e o(t) ¢(o,t)dt = A f e
o o

238 5(t) o (o(t))at +

T
n

[ ®2F 5(e) 8,00, 0)dt, (3.19)
[¢]

Integration by parts gives for the first integral on the right

hand side of (3.19)

T
2aT oo

Ae " 0 (o) - A% (c(0)) - 2aA o] e o (£)dt. (3.20)
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The second integral on the right hand side of (3.19) is less

than

T

n
SB-A) 7 520y + k2 o2 (1) ]e2?t at (3.21)

A
o

Using these modifications together with the approaches already
employed gives the proof of the theorem. Q.E.D.

The conditions of the theorems for the time varying
case are a good deal more complicated than their time invariant
counterparts; there appears to be no way of simplifying these
results and still obtaining improved conditions for asymptotic

stability.
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B. Application to Sampled Data Systems

In this section the techniques of the foregoing work are
used to derive an improved stability criterion for sampled data
systems. To the authors' knowledge, the best results obtained
thus far for the single nonlinearity system are due to
Jury and Lee[znl. Their criterion includes that of Tsypkin[ZI]
as a special case. For asymptotic stability in the large it

is required that the following relationship be satisfied on

the unit circle:

* *
Re G (z) [1+q(z-1)] + 1/K-KX' -L;LL |(z - 1)G (2)|210,
where 0 < ¢(o)do < K and |Q%§gl| < K'., In the above inequality
(z - 1) is analogous to the jw term in the Popov criterion.

Theorem 3.3 given below permits an entire class of multipliers

to be used.

a., A Theorem for Monotone Nonlinearities

Theorem 3.3. For the system shown in Figure 11 let the following
hold:
a. 0 < d¢(o)/do 5-k2 where k2 is a positive number, both ¢ (o)
and 0 - cp(o)/k2 = 0 only for o = ¢(0) = 0, and d¢(o)/do d&s
a continuous function of o.
b. G*(z) is a rational function of z having all of its poles
inside the unit circle and the corresponding time function
g(i) is zero for i negative. The numerator and the denominator

*
of G (z) are assumed to have no common factors outside or

on the unit circle in the 2z plane.
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"
c. Lim (0= ¢(0)/k,) ¢/[8(0)|" = =.

lo] >
Then a sufficient condition for asymptotic stability in the
large is that

Re [R'(2) (€7(2) + 1/k))] 2.0 (3.22)

for z = e:‘mT for 0 < w < 2w where

* * C %
R(z) =1+ X (z) +Y (2) . (3.23)

The time function x(i) 0 for 1 > 0 and < 0 for 1 < 0 while
y(i) = 0 for £ < 0 and < 0 for 1 > 0. These functions must

also satisfy

oo
I x|+ |y <1, (3.24)

j=—w

The magnitude of x(i) is less than % exp (fi) where % and £

are positive numbers.

Corollary 1. In addition to the conditions of theorem 3.3, if
¢(0) is an odd monotone nonlinearity, that is, if ¢(o) = (-0),
the assertion of the theorem holds with x(i) and y(i) permitted
to take on positive as well as negative walues.

Corollayy 2. 1If G*(z) has poles on the unit circle, G*(z) is
required to be stable in the limit; that is for an arbitrarily
small positive number €, the roots of 1 + eG*(z) must all lie
inside the unit circle. Also, the slope condition becomes

> 6§ > 0 where 6 is an arbitrarily small positive number. The

other conditions are unchanged except for (3.22) being > § 0.

1 >
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Proof. First it will be shown that
v n n n
Do) ") - W/, +
i=o
n n i n n
I o) [ txm) +ymIe™( - h) - 6" = h)/k,] =
i=0 h=-c
2 n n n
cm) I ¢ ") ("(1) - ¢ (1)/k,y) (3.25)

i=o

where c(n) is a positive number. The second summation on the

left hand side can be rewritten as
? n o n,, - n
I o7 [ xM) [0"@E -h) - ¢ - h)/k]+
i=o h=~ow -

oo

n
I o"@ [ ym) ("¢t - ) - ¢ = h)/k,], (3.26)
i=o h=o0

Interchanging the order of summation gives

o] n

Iox@) [ ") [0 - h) - " - W)k, 4
h=~o i=o0

pt t n n n

I oy [ ¢7@) [o°@ = h) = " - h)/k,] . (3.27)
h=o i=o

n
Rewriting ] ¢ (1) [0"(1 = h) - ¢"(1 - h)/k,] in terms of the
i=o ,
positive and negative components of ¢n(i) and qn(i - h) - ¢n(i - h)/k2

and applying lemma 1 given at the end of Chapter 2 results in
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n
I 7@ ("1 -1 - ¢"( - h)/k,] <
i=o

n
L o7 [6°) - 6" ()/k, ] (3.28)
i=o

Using (3.2%) from the statement of the theorem together with
(3.28) shows that (3.25) holds.
Letting o (1) = c¢n(i) + cin(i) in the left hand side

of (3.25) gives for this side of the equation

n
I e, @) - 7@k, +

i=o

n i
n
iZo ) hz_m [x(h) + y(h)][o¢“(i - h) - ¢"(4 - h)/k,] +
n n a i a
I ¢ () wi(n-+hz [x(h) + y(h)] o, (1 - hY (3.29)
i=o = -0

*
n (1) where

¢

o "y = -2 62 260 W) 1.

This substitution can be made without changing the values of the
summations in the first two summations of (3.29) eémcept for the
term involving x(1). Since x(i) is not zero for i < 0, the value

*
of o¢n (i) for 1 > n will contribute to the result obtained by
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convolution. Therefore, the summation involving x(i) 1is

handled separately by making the substitution

o¢n(i) =o¢n*(i) - o¢d(i)

which gives for the total summation where the limits on i have

been extended to + =,

B n nk n
L o7 (0, (1) - ¢ ()/ky) +

j=-

pas n L n* n
X y o - - -
I 6@ ] kM +ymllo, (-h) -o¢ 1 =h/k]
j=—c h=-w
A n L d
-7 e ¥ x o, (1 =h) . (3.30)
i=—o h=~-w
. d i n
With o, (1) = z g@d-m) ¢ m), 1 > n, using the exponential
¢ m=i-n

character of g(i) and x(i) as -in the proof of theorem 1.1 it can

be shown
~+oo n i
i d
| iz_m S h.z._.,.x(h) o, A =) | < M1I¢n(i)|2max (3.31)

where Ml is a positive number independent of n and |¢n(i)|max is the

largest magnitude of ¢n(i) for 0 < i < n. Applying the Liapunov-

Parseval theorem to the first two summations of (3.30) gives
+7 *

1
E; f f1+X (e

-

30Ty 4 v* @3N 106" N + 1/k,1 120670112 qur

(3.32)
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where T is the sampling period. Since the imaginary part of the
integrand does not contribute to the final result, (3.32) may
be rewritten as

+
*
%; f Re[l + X (eij

-7

y + D" @) + 11,1 [z6" @11 dur

(3.33)

which is non-positive by (3.22). Combining (3.25) with (3.29),

(3.31), and (3.33) gives

n
c@ § CWERE) - "Wk <M [t w|? 4
i=o

n i
|1 Wi @+ [ k() +ym)) o td - w1 (3.34)
i=o h=-e

The second summation on the right hand side of (3.34) is less than

or equal to

[ -]

i
n n n
o7 (D | e izo log (1) + hZ-o., [x(h) + y()] o, (1 - H)

= [¢"(1)] (3.35)

max MZ

where M2 is a positive number independent of n. Using (3.35) in
(3.34) gives

n
e § CWE@ - W) <Mt w|® 4w et

max,
i=o

(3.36)



99

Let n be chosen such that |¢n(1)|max occurs at i = n. Using
condition c¢ of the statement of the theorem it follows that
on(i) and ¢n(i) are bounded. Also, since the right hand side
of (3.36) is independent of n, it follows that on(i) and ¢n(i)
approach zero as 1 approaches infinity. Because of the assumptions
on G*(z), it also follows that the other state variables of
the system are also bounded and approach zero as i + ». Therefore,
the system 1is asymptotically stable in the large. Q.E.D.

The assertion of corollary 1 follows from the application
of the lemma given at the end of chapter 2 to | E ¢n(i)(on(i—h) -
¢n(i-h)/k2)| to get as a bound on this quantityi=o
% ¢n(i)(on(i) - ¢n(i)/k2). The remainder of the proof is
inZhanged.

Corollary 2 follows from the transformation

¢(c) = ¢1(o) +c0 and Gl*(z) = G*(z)/l + eG*(z) which results

in a system that satisfies the conditions of the theorem.

*
An Allowed R (2)

z - bi z - ch
Consider m( — ) T 3 ) with
12723 h27C
0 < a, < b1 < a2 < b2 «o < a_ < bn<J
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Expansion of this function in a partial fraction expansion

gives where Ai and Bh are positive numbers

1 - z Ai z Bh
z-a z—~d
i i h h
-1
A, z Bh/dh

)
-1 h1 - zfdh

from which it is seen that both x{i) and y(1) are non-positive.

The total area

o l-b l-c¢

i h
o] + ly@)| =1 - 09— 1 —) < 1.
=- w0 i 1- ai h 1l - dh

Therefore, this function is an allowed one for the general

monotone nonlinearity.

* 3.6 1.2
Examgle'3.2. Let G (2) = =9~ 7= .3 and 0 < k2 < 1.

z+ .3,,z+ .9

.3
z - .3)(2 - .9)'

* 2 -
Let R (2) = Py

*
G (z) + l/k2 =

Expressing this function in the time domain gives

1 2

R (z) = 1 -.62 1 +2(.3)% 7% - 2(.3)%"3 + ...

from which it is seen that y(t) takes on both positive and negative
values and that the summation of the magnitude is 6/7. Therefore,

*
this R (z) may be used with symmetrical monotone nonlinearities.
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* *
R(z) (G(z) +1) = (z+ .9)/(z - .9). The angle of this
product on the unit circle is - tan—l(9.48 sin wT). Therefore,
the criterion is satisfied and the system is asymptotically

stable in the large for the given range of k2'
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C. The Multiple Nonlinearity Problem

Application of the by now standard approach gives the

following theorem for a system having a number of nonlinearities.

Theorem 3.4.

For a continuous system with i nonlinearities let the

following conditions hold:

a.

Ce

0<d ¢i(oi)/dci < k,; vhere k,, is a positive number,
both ¢i(ci) and o, - ¢i(ci)/k21 = 0 only for'oi = ¢i(ci) = 0,

and d¢i(oi)/doi is a continuous function of oy-

The transfer function - Gi (s) relating F(ci(t)) to

]
F(¢j(t)) is a rational function of s with the number of zeros

at least one less than the number of poles and with all of
the poles in the left half s plane.

%

Lim f ¢i(ci)dci/|¢i(oi)|2 = o,
(o]

oy |+ =

Then a sufficient condition for asymptotic stability in the
large is that the Hermitian matrix H(jw) be positive semi-

definite where

- 7
hll(jw) hlz(jw) ceeeee
H(jw) = hzfjw) hzz(jw) cecooe
i hnn(jw)A
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where hii(jw) = Re Zi(jw) KGii(jw) + 1/k21)] and

h; 3w ='% [z;(Ju) 6;,(3w) + 2,(Jw) Gyq(Ju)] for 1 <3

(jw) for 1 > j.

jw) = hji

and hij(

Zi(jw) =1 + aijw + Xi(jw) + Yi(jm)

where ay is a positive number,xi(t) = () for t > 0 and yi(t) = 0
for t < 0 with both of these functions being non-positive and
consisting of the sum of a piecewise continuous function which is
Fourier transformable and shifted impulse functions that satisfy
40
[ dxo] + ly (o) de < 1.

-00

Corollary 1. 1In addition to the conditions of theorem 1, if

¢i(oi) is an odd monotone nonlinearity, the assertion of the

theorem holds with xi(t) and yi(t) being permitted to take on
positive as well as negative values.

Proof. The proof of this theorem parallels that of theorem 1.1

but instead of working with one function there are n functions.

The only variation occurs after applying Parseval's theorem. The
quadratic form that is obtained is associated with a Hermitian matrix
which is required to be positive definite. After applying this

condition, .the inequality given below is obtained.
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T
n n
Lo (1) [ [og(e) = o3(£)/k,] o3(t)de +

n n

n 2 a n
Ioag o) < ] My, le @ o+ 1 My lo (o)

i=1 i=1 i=1 max

+ 7 a, ¢,(0),
I !

The reasoning of theorem 1 leads to the conclusion that all of
these variables are bounded and approach zero as t - <.

Example 3.3. This example was considered by Ibrahim and
REkasius[ZZ]. The system consists of two nonlinearities connected
in a single loop with linear elements in between. Gl(s) = 1/(s+5)
and Gz(s) = (s+1)/(s+2)(s+3). For this case, Gll(s) = GZZ(S) = 0,
GlZ(S) = -1/(s+5) and G21(S) = (s+1)/(s+2)(s+3). The + sign

for G2§s) is due to the feedback being negative. It i’ assumed

that both nonlinearities are continuous monotone functions.

ReZleZZ 1 zl(jw) ?.2(-jw) (=jw + 1) 2 . o

lBw) | = E;I.E;; % Ju + 5) ~ (3w + 2)(=jw + 3) -

If asymptotic stability in the large is to be shown for
0 < k21 < o and 0 < k22 < o, two functions Zl(jw) and Zz(jw)
must be found such that the quantity inside the magnitude squared

brackets is zero. This requires that

20(0)  Z,(-3u)(~fu + 1)
(0+5)  (cyur 2)(-Ju + 3)
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5
-jut 2

v+ D(Eu+3)
(3w + 2)

Let Zz(juD = = jw+ 4 - and

2

4

2
(o + 5)(-jw + D(juw+ 1) 4
Jut 2 -juw + 2

2,30 = e v D Ge + 2)

= ju + 5 -

A check of the integral magnitude condition for these two
functions reveals that they are allowed functions for general
monotone nonlinearities. Substitution of these expressions
gives (w2 + 1)/(w2 + 4) on both sides of the equation. There-
fore, it has been shown that the given system is asymptotically
stable in the large for monotone nonlinearities having
arbitrarily large slopes. 1In [22], asymptotic stability

was shown for k21 = k22 = 6,

Conclusion
This chapter has applied the method of chapters 1 and 2
to get improved theorems for a time varying nonlinearity, for a
sampled data system, and for a system with a number of nonlinearities.

In order to show how useful these theorems are, it will be necessary

to consider a number of different examples for each case.
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VI. CONCLUSION

From the conclusions given at the end of each chapter it
is apparent that additional research in the area of time-frequency
domain stability criteria should be worth-while. In particular, the
problem of the closeness of the stability results to the actual

absolute stability boundary is an important one for future study.
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